
































































































































































































Lecture 3 Importantconcepts

1 Basic

II.LIteaimmnseae
Ensembleaverages partitionfunction

Ergodicity

Microcannonical ensemble S fblad connectiontothermo

Ideal gases quantum vs classical partitionfunction

Maybelionvittehe

I.ie IItI entropy particus us finds

MaxwellBoltzmann dist
Connection to themo
Absolutepartitionfunctions unnecessary Impossible

Fluctuations equivalence Maxima minima
Grand canonical equilibrium

NPTensemble Reversibilityand

Reversibility the2ⁿᵈ law

statisticalderivation of NUTpartitionfunction
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Lecture 3 EnsembleTheory
I Ensembletheory Basics

A Microstates andEnsembles

In our discussion of dynamics we became acquainted with

the concept of the phasespace For a system with N

particles phasespace is a 6N dimensional space where

the coordinates are the 3N generalizedcoordinatesq and
3N generalizedmomenta pi ie I 3N

For a givenset of initial conditions qi to fi and

pi t o Pi o we will move with some trajectory in this

very high dimensional space We call a single system
a microscopicstate or mictate
the key insightof JosiahW Gibbs isthatinsteadof thinking
about trying tocompute thedynamics of microstates we

should focus on ensembles of microstates Anensemble is

a collection of diffentmicrostateswithdifferent initial conditions

a singlemicrostate Ensemble of IT microstates

m

ei Me
19 1410

Egidio
Qi Gi
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B TheErgodicHypothesis

At first this seems like it only complicatesthings Instead

oftryingto solve thedynamics of one I C we are now

trying to solve for the dynamics of ICs But thinkback

to the harmonic oscillator for amoment There the phase

spacetrajectory was periodic If I picked a different initial

condition I was goingtoget a very similar trajectory
Harmonic Oscillator

size ofcirclefixedbysystem's
initial energyPi
anychoiceof IC w constant

energy will like on this circle

so thetrajectory of a single microstate is the same as

if I picked an ensemble that corresponds to all of the

possible initial conditions

this has the constraint of having constant energy but

I could always define a differentenergyandget a new
circle if needed

Thisidea is called the Erechtheus It says that the

dynamics of a singlemicrostate will visiteverypossible state

given a longenoughtime This is one of the fundamental

postulatesof statistical thermodynamics
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In thermodynamics we are going to beinterested inaverage

quantities So forexample we mightwantthe average pressure
If we have averylongtrajectory of a singlemicrostate we

couldgetthisaverage

M ᵗM x t at X Ei Ei ie 1 3N

Can we do this Yes we can now withcomputers Oneneeds

tosolvethe equations ofmotion for thesystem Thisismolecular

T.ie tiateEe ecouuis.tnes
The Ergodic hypothesis of Gibbs says that we don't have to

Instead we can do an

ensembteaveragem.CM
MCI g x de

phasespace
metbability

density ofpointy

r fax
In otherwords

M MT Ensembleaverage timeaverage

This is a mathematicalexpressionof the Ergodichypothesis

c Phase Space ProbabilityDensity

Because of the E H we now see that if we know the

probabilitydensity ofmicrostates in phasespace we can
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compute ensembleaverages How do weget this probability
density

Suppose we have Nmicrostates let D IX bethenumber

ofmicrostatesper phase spacevolume so that

DX dx

Theprobability density must then be normalized to 1 so

that

ex D Éa
This is a formal definition of the probabilitydensityofmicrostates

in phase space It seems very mathy we have justkicked
the can down the road How can I compute or DCI
or g x

D MicrocanonicalEnsemble

I am goingto assume a certain kindofensemble ofmicrostates

In this ensemble I will have N particles in a boxof

volume V Thetotal systemenergy will be a constant E

Let's see if we can find theprobabilitydensity of the

microstates g X in this ensemble

Myphasespace integralforthe NVE ensemble or the

Eencalensemble is given by




















































































S

EINVE S H X E dx
T Diracdeltafunction

Menstatt
fm
pSpif

8 HCq18 1 193NPnPmiPsN 8

dgdqz dgzndpidpzi.JP3N

usingthis theprobability density is given by

SNVE 1 8 HCI E
if energy E

O if energy E

In otherwords there is a uniformprobability of microstates

in themicrocanonicalensemble This is the second postulate

in statistical thermodynamics It is sometimescalledthe
PIhofequalapripobabilities.ee

E Quantum Correctionto theNumberofMicrostates

There is a problem with our probability densitythat we

justwrotedown It is continuous We really want a

PMF Theprobabilityof a microstate is infinitely small for

a continuous probability density We will see in a minute

that theconnection to thermodynamics means that this

infinitelysmall probabilitymakes somemacroscopicquantifies

infinitelylarge This is obviouslywrong
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Thisisn'tthathardof a problemtosolve We will justdefine
some minimum volumeofphasespace tobe our smallest

chunk that counts as a microstate Then we can get
a discretenumberof statesby dividing

ΣΣ NYE size ofphasespace

Σ NYE minimumvolumeofPhasespace
p

R NYE numberofmicrostates

1 Σ B
x

Butwhat is Eo From a classicalmechanicsperspective it is

arbitrary Wejustneedsomethingthere Thefact that it is
arbitrary is a sign our theory classicalmechanics is incomplete

But we know Qunatuon Mechanics In QM we know that

there is an uncertainty principle Uncertainty says that

OxOp h 4H

Usingthisprinciple mathnotshown one can say that a
singledimension of xandp give a volume of h in phase
Earforpartical in three dimensions weget a
factor of 23N

Σ a 43N

FGibbsParadox

There is one moreproblemwith our countingof microscopicstates

we are overcountingthenumber of states because of possible
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permutations between particles

suppose we have a twoparticlegas

particle 1 4 I All I didhere is swap
particle2 Iz 12 the labels between

particle 1 and particle
2 butthese are the

particle 1 4 I same microstate
particle2 Eu 12 However our integral

countsthese as two states

We need to fix our integral to not doublecount permutations

that arent really differentstates wecouldredefine a new

integral hard Instead we can justdivideby the
number we are overcounting This is the other piece that

goes into Eo

Eo x N Factor for overcounting

Puttingthis with the quantumcorrectiongives
Σ hNN

1 Fun Σ
AsideTheN termwas initiallymissing in Gibbsformulation
anditmadeEntropynotextensiveand brokemixingentropy
This was GibbsParadox




















































































8
with this normalizationfactorwe can write the PMFfor

the ofmicrostates like we wanted

P X if H X E R ofmicrostates
otherwise I isalsocalled

thedensityofstates
where

NCNUE y
SCH x E dx

G Boltzmann'sFormulaandEntropy
So far we have had two major ideas fromGibbs These are

twoof thethreefundamental postulates of statisticalthermodynamics

1 Ergodicity we canconsiderensembleaveragesinsteadof

timeaverages

2 Aprioriequalprobability the probabilityof equalenergy
microstates is uniform and therefore the

probability ofmicrostate is inversely proportional
to its degeneracy numberofstatesw sameenergy

Tomakethe final leapto connectmicrostatestothermodynamic
macrostates we need one more postulate Boltzmann's

formula

stent

entropy ofmicrostates
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This idea is probably so familiarto you thatyouundoubtedly
fail toappreciate its significanceand revolutionary impact

in classical thermodynamics entropy is an
absfitisfflingthat systems posess that always increases

andGibbs insights we see that entropy is inherentlystatistical
in nature Entropy is a count of thenumberof ways a

system can exist thevolume of itsphasespace It is

something about how disordered a system is Howmany
differentways it can be arranged Howmuch information the

systemhas s α In Yp pal wehavehighinformation lowsurprise

Toget Boltzmann'sequation more precisely considerthe following

thought experiment

Ni Vi E NnVz Er Instant
Total Energy E E Ez

totalmicrostates SE R1 R2
I

R Heatexchange Sr

We suppose that the equilibriumstate istheone withthemost
microstates So let's maximize so with respect to theenergy

22 0 at E E theequilibriumenergyof 1

ERET
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Usingthe productrule for so

2 e Tel Race RICE FElet

E EEE chairle

1 Fe Eo Ei 1

T ax facet LET i leg 0

Dividebothsidesby R 522

stepsLe hey E o

741 2112 e

Equilibriumcriteria

B Be let β 21
What is thecriteriaforthermalequilibrium in classical

thermodynamics

T T2 2 Definitionof temperature

β putt needsunits of energy

KB 1.38 1023
5 kis In A




















































































H Connecting Ensembles to thermodynamics

Boltzmann's equationforconnecting thenumberof microstates

to entropy is alsoconsistentwith thelawsof thermodynamics

Claw Definition of temperature thermalequilibrium

wejustprovedthis

Claw conservationofEnergy
If we dowork on the system e.g reversiblychangevolume

we addinternal energy dE PDV From our relation above

weknow dE Tds Fromthermodynamics weknowthat

de Tds t PdV SQ 8W

Thuswe canidentify Tds fromthemicrostates as the heat

energy

2law Entropy of aclosedsystem increases

Theequilibriumis themaximumnumberofmicrostates Thismeansthesystem
evolvesfrom small 2 to large S S kalmS means we evolve

fromsmallSto largeS which isthe2ⁿ ldaw

Stability perturbationsfromequilibriumreturnto it 8 2 0

Because thepoint E Eut is amaximum the second
derivative2 must be negative concavedown

Practically whatdoesthismean Howdowe connect information

about microscopicinteractionsto thermodynamic quantities
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Sept Determinethe Hamiltonianforthesystem of interest
H qi pi usingmolecularpotentials

H Pfm 7 uij qi q

Sep2 computethedensityof states 2 N V E

NCNUE y S H x E d I q p
usuallythehardstep

3 ComputeS using Boltzmann'sformula

5 kilns

step4 use thermodynamicrelations tofindotherquantities of interest

Legendretransforms

F E TS

H E PV

G H TS
Fundamentalequations maxwellrelations

ds fdE I dV Fundamentalequationfors

P T Ev Pressure Byinspection

cu 3 E v1 E v Heatcapacity

es
1yqnate

useensembleaverages tocomputequantitiesof
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M M x g x dx

INVE X S H x E

2 SCHIX E dx

This is sometimes writtenwith thePMF instead

M nF MC PCI de

PX 8 HCI E

R S HCI E dx

I Ideal Gas

Let's apply our procedure tocompute theequationof state and

the heatcapacity of an idealgas of Nparticlesofequalmassm

Ipl Determine Hpq
Foran idealgasthere is no potential betweentheatoms of the

gas U qi 0 So the Hamiltonian is

Heapit Én

U2 compute s thelongstep

vi 8 É m
E dedg I pi iel 3N

Missindependent
of

fi i 1,3N
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nF de s En E

lets dothe dgintegral

dq dg dg dg dq3n

LME.tk e

Elqdan
UN

substitutebackinto I

r Fist e de

Now let'sdo the dpintegral Thedeltafunction reduces us to
a 3N 1 dimensionalhypersurface in the p phasespace In 20

Pz
Pit p 2mE

Acircleof radius p FmE
P S 2 p 21TZMEN

In 31 weget a sphere with aradius p ME andsurface area
S 4Hp 4H 2ME

For3Ndimensions weget a hypersphere in 3Ndimensions

Thesurface area of a hypershere in a dimensions of radius

R is givenby
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s R n Gammafunction

annoying to write
n h 1 when no N

as factorials b c of the n 2 The Insistent.is
using this formulagives for 3Ndimensions

5 272 path Eg ame

Forlarge N 31 342
me

Wecan nowput it all together

r Fi
awesome

Sep3 Get theEntropy

s asenr hrsenfitn.EE 5

Sep4 Getthequantities we care about

let'sget the pressure first

P T f e evaluate33

men fun
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kmNenv KBf N E

KBN V

Plug into formula for P

P T 171 or P NFI

Nowfor theheatcapacity Let's use thefact that

I EE fromfundamentalequation otherterm

hmenlfo.EE
KB 3 enE Niv

KB 3 E
E 3 KBT

Theheatcapacity isdefined as

Cv Et 312kt 3111

Cv 31KB

whatdid we do we derived all of the thermodynamicproperties

a iE.EE i i
dilate gases Teaches us what an idealgas is It is a

gas with 4 0
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J Quantum corrections andAbsolute Densityof states

I want touse theidealgasentropy tomaketwopointsabout
statistical thermo Firstwe needtodo somemath Starting
withtheexpression we had fortheentropy of an idealgas

samenlnf.fi
hisen FEW 7m

S hp In v bun en f 3N2

T en 277 13 biz

Stirling's formulaforthefactorialN For N a

hrN out InN N bn 2n

NAN N

Stirling'sformulafor theGammafunction

an sea cziiienti.it iiiiiti a
man

en 131 In 3 3 en2T aptainthecomplex

31en31 31

NeuV NlmN N 31en31 31
31en TTI In2
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Fp env enN 1 32en 312
w w

Zen 2 5 en

goestoo

en É21m E
To en en 451 soffit.Tetrode

Recall thatthe totalmomentump isgivenby

p Pix p plotPixt 2ME totaggystem

what istheaveragemomentumperatom p the average
momentum is given by

Gp V5prms rootmeansquare

prms VPI p is thesquare anddividebyN
togetthe mean

p 1217 1457T

If weknowthe averagemomentum we can definetheaverage

deBroglie wavelength

7 47 Ep ITE FEE
Aside thermal wavelength
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thethermalwavelength is thedeBrogliewavelengthofgasatomswith
energyEN We usuallysubstitute E NEATtoget

Éne Étmfzast atheist

4th ftp.qq size of wavepacketof an atom
withmassm andtemperature

Note thecorrespondancewith the terminparentheses in the

Sacker Tetrode equation

enYN en 451

Em en Y em E

bn hr

Japs bn Ix
Now we can make a commentaboutquantumcorrections

When istheSaskartetrode the equation for aclassicalidealgas
valid When the deBrogliewavelength issmall How small

Wehaveanothernatural lengthscaleTheaveragedistancebetween

atoms inthegas

l 1
volumeperatom unitslength

Sowhen I s 7th the quantumeffectsshouldbesmall If luxth
then I can havequantumeffects
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If luxth then I have totakeintoaccountspindegreesof
freedom If they have integerspin they are bosons e.g photons

and thegas is a bossgas If theyhave half integerspin they
are fermions e.g electrons and thegas is a fermi gas Most
matter e.g atoms arefermions Butsome canbebosons e.g sodium

atomscanform a Bose Einstein condensate

Wait a minute then is our s wrong If so whydoesn'tit

matter The answeristhat

t.utty.ge EIetfreedom So in this sense it is

I with more microstates

I corrected Ist sspin
Boseor Fermi

But it turns out this doesn't matter at large CN 3 why
One of themostimportant points to learn here is that

thereare alwayssmaller Dd F wecouldaccountfor we can have

moremicrostates forstringtheorytoo By ignoring these
AKA bysetting Shspin L or any small Dof we

are choosing a refestate We are saying that

5 0 at somepoint

As weknow in thermodynamics our resultsdon'tdepend

on the referencestate So we are ok when we do this

what matters is how D SIN V E or how I depends

on the system constraints
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So in the case of a BoseFermigas the dependenceof

Ron N V E is only affectedwhen In 2 otherwise

those DO F are irrelevant

Theotherpoint tomakehere is that theabsolutevalueof

R is not very important then we really only care about

S So where she is our referencestate where 5 0

Finally it is impractical tocountmicrostatesnumerically these

are impossibly largenumbers lets do a quickcalculation

withthe SackurTetrode equation to seewhy

S his end I exp skB

Event e IF
Example Heatoms at 300kand I bar in 1cm

m 49mol h 6.626 1034Js T 300k

kg 8.314Jmolk P 1bar 105Jm

P NET Et st 40.09

2.41 1025m 3

am Lat iiIL.IT ia lEit g

6.626 0 kamys 2 kgking
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t.EE tsoninXth31 28 10
3
m

enl enl
bn 3.24 106 52 15.1 intensiveentropyas

Assume 2K In Yf for a minute

kt e Eos
241 10

R exp slam 21 71
5
426

241 1019

I
101019

In summary

Absolutedensityofstates is notnecessaryandimpractical

Thereare alwayssmallerscale degreesoffreedom

Thermodynamics depends on thedifferencebetweentwostates

Thedensityofstates isan impossibly largenumber

Bysetting thedegreesoffreedomwe are neglecting we are setting
thereferencestate
Thedependence of R on theconstraints N V E determines

the thermodynamicbehavior
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II OtherEnsembles andFluctuations
A CanonicalEnsemble

we saw that we coulddefine an ensemble of systems that
hadafixed number of particles N volume and energy E

However energy and temperature arethemdnamcggates.E.isnotprivilegedover T Also it ismore common for

experimentally encounter a system that is at constant T so

we would like to construct an ensemble withconstant
N V and T Thistypeofensembleis called a conical
Emble
Forthemicrocanonicalensemble we

1 Postulated a probabilitydensity

uniformdensityof configurationswithequalenergy

2 Used the probabilitydensity to findthedensity of

States S E

3Used theBoltzmannformulato findtheentropy
5 KB end

Wewant to follow an analogousprocedurefor the canonical
ensemble let's first find the probabilitydensity

In this case we needto use our result for themicrocanonical

ensemble Wedon'twantanynewpostulates

So we are going to construct a canonical ensemble as follows
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y E I Bigsystem is

NIV EiE Ez Es Ei4 Littlesystem

4
is N V T

cm int HeatExchange
with neighbors

Theothersystemsact as a heat bath for theNUTsystem keeping
it at a constanttemperature
There are M littlesystems makinguptheensemble

MN I MV
The energy of the NUT system canfluctuateand is a

randomvariable Ei
IntheMmembers of the ensemble therewillbe on that
haveenergy Ej

Mj S Ei Ej mi occupationnumber

1 if J numberof energylevels

Ei Ej S Ei E 1 if Ei E
0 otherwise

Thetotalenergyandtotal number of ensembles are constrained

IM Ej E 1 Mj vectorofall

Mj M
occupation s
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Withthe aboveinmind we want to find the probabilityof finding
one of themembers of our NUTensemble at energy E

Pj Pnv Ej
If we couldlookat thestatistics of our ensemble we would

see that

p
4M average of times we observe

the energy E in theensemble

total sizeofensemble

Thereare manydifferentwayswecouldarrangeall of theenergies

Example

M G E 8 5 4 Ej 0,12,3
Distribution I

i 1 2 3 4 5 6

Ei 2
1 0 4 20

I 1 2

I Mj 0 4 2 to 6 M

MjEj 0 0 4 1 2.2 0.3 4 4 8

pistribution
2

4 s 6
a 1,3 11

Ei 0 3 1 2 1 1

Mj 1 3 1 1 6 MV

MjEj 1.0 3.1 1 2 1.3 3 2 3 8
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In the microcanonicalensemble we said that anyconfigurationwith

energy E wasequallyprobable principle ofequal aprioriprobability
Here thebigsystem is an NVE ensemble That means that any
vector in where Im E is equallyprobable So we justto
count the numberofways we can arrange theenergyin the M
bins Thiswill tell us the probabilitydistribution

WCA ofwaysofarrangingthestates for a givenof

MultinomialWIM mi.mn
m t.fim.coesticient

Example

Distribution 1 m 0,4 2,0 M 6

win
o

3
is

ofways toarrangethe 4 xE 1 and 2x E 2 into 6bins

Distribution 2 m 1,3 1 1 M 6

What 654 120

Manymorewaysto come upwith thisdistribution ofenergies

UsingWLA we can write a probabilitymassfunctionfor a configuration

P A fty PMFof the configurationon
multidimensional
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ProofforBinomialCoefficient 5 2

W m m
mh

m m ma M M

1m
itm.mil I
111 Ii

Determiningthemaximumof the distribution

Themaximumof In W isthesame as themaximumof w

In w lum bum en M m

MenM M mlam m M n en M m Mm

MenM M meron th Mln M m

onen M m M M
MenFm men In

Now tofindthemaximum we lookfortheextremum

Fm law
my
0

EmMMM Men mm menon mln mm 0

him t mm mm enmm G1 End 0

thaten Ek o me e

M m m 2m M mt
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Whatis thedistributionas Max
Thedistribution PMI is

ecm
Etf In 1

Tofindthedistribution at largeM we will look at

thecumulantgeneratingfunction

Findthe probabilitygeneratingfunction first

G Z E Jm Mm 2m In Hz 12ᵗʰ
4ᵗʰ ᵗᵗᵗ

Ignaseries
The momentgeneratingfunctionis

Mls E em G es
m

The cumulantgeneratingfunction is

K s enMCs en LE Men ites Menz

Now find cumulants

k M Is so Feses
so
4

themaximum
m
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k 02 data
so

Mes Fes cites

usedMathematica fork3
Kz 0 Ky Mg ks 0 KG M 4

Series solution

KCS 1s
Compare tonormal Gaussian

KGaus MS 0252

Do the higherordertermsmatter as m No

Sis oftheorderof esm let's rescale

let 5 Ms s 5M

K 5 Em 214 m6

kist 5 In5 m
54 21880ms56

Thewidth Thesetermswilldropout

film veryquickly as m a

conclusion

TCLT KCS Gaussianwithamaximum at M2andwidth

MIT It willgetsharperand sharperas M
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So we want to find themostprobableconfiguration for

themultidimensional W m subjectto theconstraints

Emj M total ofensembles

m E Ei totalenergy

Wewill usethemethodof Lagrangemultipliers forthe constraints

Ut

f m enw m α Jm M β EmEj Ei

Find theextremum

Emil
mm

Em
Emily EE.mil BEGETE

1 Em hw Imentirely Don'tneedtosubfront
becauseof

constraint

Imf Emfm Femi Em lami

mfm
Emg Inmj Em mjlnm.im

flum F enmj

2 Jm Egmj M
Emilmitmet.intm t Mj my m

I














































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































