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Foundational Assumptions

|8 Semi-infinite flat plate (the plate radius 1s
larger than the outermost extent of fluid)

»A Gravitational forces are negligible compared
to centrifugal forces (the plate spins fast)

<} Radially symmetric initial (and transient)
fluid distribution

“8 Viscosity 1s independent of shear rate

(Newtonian Fluid)

~1| Shear resistance is only significant in
horizontal planes (relatively thin layers)

(% Radial velocity 1s sufficiently low to neglect
Coriolis forces.

74 The top of the fluid film is exposed to air
which exerts negligible shear forces.







Methods: backtracking

Equation of motion, cylindrical coordinates

Gravitational body force

Centrifugal body force




Methods: backtracking

(D_) —VP — (V- 1) + p(w?r) Body forces: use F., instead of Fy

Dv
(D_) = —VP + uV?v + p(w?r) Newtonian Fluid with constant density

v, Reference frame of moving plateasv=0
—U = p(w?r)

72 Negligible Pressure gradient
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Rearrange

Use total derivative definition

ﬁ  2p(w?)h® 2 ODEs from 1 PDE
dt 3u
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A Boundary Condition
In(r) = Eln(Bt + 1)+ C,

A
In(r) = Eln(Bt + 1) + In(n,) Subin C,

In(r) A
() B In(Bt + 1) Rearrange

T A
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Use total derivative definition

dh  2p(w®)h’ dr _ p(@*)rh® 7 ODEs from 1 PDE
P dt U

4p(w?)h? 3/4 ODE Solutions for
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Results and Discussion
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esults and Discussion (continued)
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Conclusion
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