


where 𝑠 is the slope of the line equal to the square root of the ultimate Newtonian viscosity and 

𝜏𝑦 is the yield stress of the blood.  

 As the goal of this paper is to determine the velocity profile of blood in a cylindrical pipe, 

we must first solve the Casson representation of a non-Newtonian fluid for 𝛾̇ = -
𝑑𝑣𝑧

𝑑𝑟
 and 

integrate with respect to 𝑟. We can therefore write: 
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 In order to integrate this system, we need to find an expression for 𝜏𝑟𝑧 such that 𝜏𝑟𝑧 =
𝜏𝑟𝑧(𝑟). This is accomplished with a force balance on a cylindrical control volume within the 

system as shown in Figure 2. This provides us with the following equation: 

 𝜋𝑟2𝑃|𝑧 − 𝜋𝑟2𝑃|𝑧+Δ𝑧 − 2𝜋𝑟Δ𝑧𝜏𝑟𝑧 = 0  (3) 

where after dividing by the volume, rearranging the equation, and taking the limit as Δ𝑧 

approaches 0 yields: 
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 As the left side of the equation is only a function of radius, 𝑟, and the right side of the 

equation is only a function of 𝑧, both sides must equal a constant. As we have a known pressure 

differential over a known length, we can express this constant as 
(𝑃𝑜−𝑃𝐿)

2𝐿
 where 𝑃𝑜 and 𝑃𝐿 are the 

inlet and outlet pressures, respectively, and 𝐿 is the length of the cylinder. Now, 𝜏𝑟𝑧 can be 

expressed as a function of 𝑟: 

Figure 1: Casson plot showing the relationship between the square root of the shear rate, 

𝛾̇, and the square root of the shear stress, 𝜏 = 𝜏𝑟𝑧 for human blood [1] 

Figure 2: Visual representation of the force balance for a control volume in our system [2] 



 𝜏𝑟𝑧 =
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Another important conclusion that will come from Eq. (4) is the maximum shear stress, 𝜏w, 

which is experienced at the wall of the cylinder. This can be written as: 

 𝜏w =
(𝑃𝑜−𝑃𝐿)

2𝐿
R (6) 

where 𝑅 is the inner radius of the cylinder. Combining Eq. (5) and Eq. (6) together, we get the 

following relationship for 𝜏𝑟𝑧 = 𝜏𝑟𝑧(𝑟) : 
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𝑅
𝑟 (6) 

This can be inserted into Eq. (2) to give the expression: 
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Integrating this equation and solving for 𝑣𝑧, it is shown that: 
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 It should be noted that the integration bounds for 𝑟, and thus the domain of Eq. (8), are for 

𝑟𝑐𝑟𝑖𝑡 ≤ 𝑟 ≤ 𝑅 where 𝑟𝑐𝑟𝑖𝑡 is the critical radius such that: 
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This constraint is made because at any point beneath, 𝑟𝑐𝑟𝑖𝑡, the yield stress of the blood is greater 

than the shear stress and the velocity becomes constant. By combining Eq. (6) and Eq. (9), we 

can write: 
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This value can be plugged into Eq. (8) to get the constant velocity at the center of the pipe, 𝑣𝑐𝑜𝑟𝑒, 

for any 𝑟 ≤ 𝑟𝑐𝑟𝑖𝑡 and can be expressed as: 
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 In deriving the expressions for the velocity profile of blood, several assumptions were 

made. These include the length of the tube, 𝐿, being much greater than the radius of the tube, 𝑅 

such that 𝐿/𝑅 > 100 to eliminate entrance effects. It is also assumed that we are operating in a 

steady, fully-developed system with isothermal flow where blood is incompressible, the no-slip 

boundary condition is applicable at the walls of the tube, and momentum transfer is one 

dimension in the 𝑧-direction only such that 𝑣𝑧 = 𝑣𝑧(𝑟). 
 

Results and Discussion 

From Eq. (8) and Eq. (9) above, we are able to model the velocity profile of blood as 

shown in Figure 3. This plot was created using an average pressure drop of 9333 dynes/cm2 

(7mmHg) and a radius of 0.07 cm, both typical for smaller veins [3, 4]. A length of 1000 times 

the radius was used to guarantee the inexistence of entrance effects. Parameters varied by source 

for the yield stress, 𝜏𝑦, and the square root of the ultimate Newtonian viscosity, 𝑠. Table 1 in 

Appendix I shows the values used for the constants for each curve below. 

From Figure 3, it is observed that the flow profiles of blood are blunter than those of a 

Newtonian fluid under the same conditions (with a constant viscosity of blood used 

representative shear rate above 100 s-1) [1]. This is due to the presence of yield stress in the 

blood, and we would expect a similar behavior in other Casson fluids. It is also observed that 

Merrill’s values for 𝜏𝑦 and 𝑠 align better with a Newtonian flow profile than Nguyen’s which 



reach just half of the maximum velocity of a Newtonian fluid. In fact, at lower velocities (< 

1cm/s), Merrill’s profiles almost correspond directly to Newtonian flow profiles. 

 Several of our assumptions become evident in the velocity profile shown in Figure 3. The 

no-slip boundary condition is what gives all four plots the intersection at coordinate (0, 1) of the 

graph. Likewise, though difficult to see on this particular graph, our assumptions of pressure and 

length affect the value of 𝑟𝑐𝑟𝑖𝑡 where 𝑣𝑧 = 𝑣𝑐𝑜𝑟𝑒 and the velocity profile is vertical. For our 

chosen pressure and length, 𝑟𝑐𝑟𝑖𝑡 is on the scale of micrometers and it is difficult to see on the 

graph. To see the effect of pressure and length on 𝑟𝑐𝑟𝑖𝑡, please see Figure 4 in Appendix I. It is 

interesting to note that though we have made an average pressure assumption, the values 𝑟𝑐𝑟𝑖𝑡 
should be constantly changing with every heartbeat due to the fluctuating pressure differential. 

 

Conclusion  

 Merrill’s paper was the first paper to break blood into its components and successfully 

determine what gives it its non-Newtonian nature, including the behavior of blood for many 

different blood diseases, such as anemia. After this paper’s publication, many papers discussing 

the rheological conditions of blood and how differing factors in a patient’s blood (such as the 

hematocrit level, fibrinogen level, etc.) might change the flow pattern and, therefore, the method 

to treat and prevent different diseases, such as thrombosis. Several studies have also been done 

linking the rheology of blood to personal fitness and health [2]. 

 The applications of a Casson fluid flow profile extend to much more than blood, 

however. Other Casson fluids include pharmaceuticals, jelly, tomato sauce, and concentrated 

fruit juices [5]. An understanding of these flow profiles can also help in wide-scale 

manufacturing where these fluids are transported through pipes into their respective containers. 

 It was incredible being able to learn as I went through this derivation. Through this 

process, I learned how a force balance is really just a momentum balance, how the yield stress is 

able to affect flow, and how one combine force balances and non-Newtonian models to 

accurately model non-Newtonian fluids. It was also incredibly interesting to me to learn the 

reasoning behind the transport properties of blood. Thank you for this opportunity to apply the 

transport phenomena principles we learned in class in a new and insightful way. 

Figure 3: Velocity profile of blood through a cylinder using Casson equation (solid lines) 

and comparing them to a Newtonian fluid under the same conditions (dashed line). 
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Appendix I 

 

Table 1: Values of 𝜏𝑦 and 𝑠 used to produce Figure 3 [1, 2] 

Model 𝜏𝑦 𝑠 

Merrill Graphical Values 0.035 0.031/2 

Merrill Typical Ranges 0.04 0.031/2 

Nguyen Values 0.0289 0.229 

Newtonian 0 0.03241/2 

 

 

 

 

 

Figure 4: Different pressure and temperature conditions to see how 𝑟𝑐𝑟𝑖𝑡 changes. Vertical flow 

profile influenced by 𝑟𝑐𝑟𝑖𝑡 indicated in red on the graphs. Top Left: ΔP = 7mmHg, L = R*1000; 

Top Right: ΔP = 7mmHg, L = R*3000; Bottom Left: ΔP = 2mmHg, L = R*1000; Bottom Right: 

ΔP = 2mmHg, L = R*3000. 


