3 ROBOT KINEMATICS

Purpose:

The purpose of this chapter is to introduce you to robot kinematics, and the concepts
related to both open and closed kinematics chains. Forward kinematics is
distinguished from inverse kinematics.

3.1 Kinematics Chains

Mechanisms can be configured as kinematics chains. The chain is closed when the
ground link begins and ends the chain; otherwise, it is open.

3.1.1 Serial robots

The manipulator of a serial robot is, in general, an open kinematics chain. The joints
must be controlled individually.

Figure 3-1 Set of serial links connected by joints

Assuming binary pair joints (joints supporting 2 links), the degrees-of-freedom (F) of a
mechanism is governed by the equation

F:)\(n-l)-Zj:ci (3.1)

where
F = mechanism degrees-of-freedom
n = number of mechanism links

j = number of mechanism joints
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¢ = number of constraints imposed by joint i
fi = degrees-of-freedom permitted by joint i
Ji = number of joints with i degrees-of-freedom

A = degrees-of-freedom in space in which
mechanism functions

It isalso true that
A=c +f

which leads to Grubler's Citerion:

F:)\(n-j-l)-zj:fi (3.3)

Example - 6-axis revolute robot(ABB | RB 4400): Figure 3-2 - ABB 6-axis robot

Using (3.1) and referencing Figure 3-2:
F=6(7-1)-6(5)=6 "asexpected"

Note: that the degrees-of-freedom of the robot equals the
number of moving links, which equals the number of
joints. To specify a unique manipulator configuration,
each joint must be controlled.

Example - 3 axis revolute planar robot:
Using (3.1) and referencing Figure 3-3:

F=33-1-212)=2

Figure 3-3 - Planar robot

Why isn't the answer 37?

3.1.2 Redundant degrees-of-freedom

Grubler's Criterion is valid as long as there are no redundant joints. A redundant joint is
one that is unnecessary because other joints can provide the needed position and/or
orientation (see last 3 joints on IRB 4400).

Redundant joints can generate passive degrees-of-freedom, which must be subtracted
from Grubler's equation to get
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j
F=A(n-j-1)- 31, -f
i=1

(3.4)

Example: Quicktime video of robot. Shows how last joints can be configured to avoid

redundancy during robot task motion.
3.1.3 Loop Mobility Criterion

Consider Figure 3-4. Some of the links
have more than two joints, leading to
multiple loops. The number  of
independent loops is the total number of
loops excluding the external loop. For
multiple loop chainsit istruethat j = n +
L -1 which gives Euler's equation:
L=j-n+1 (3.5)
Figure 3-4 applies this equation for a 2
loop mechanism.

Combining (3.5) with Grubler's Criterion,
we get the Loop Mobility Criterion:

D fi=F+AL (3.6)

3.1.4 Parallel robots

A paralel robot is a closed loop chain,
whereas a serial robot is an open loop
chain. A hybrid mechanism is one with
both closed and open chains.

Example - Figure 3-5 shows the Stewart-
Gough platform. Determine the degrees-
of-freedom. Note that each SP-S
combination generates a passive degree-
of-freedom. Thus,

A=6 n=14; 1 =6; j3=12,

Figure 3-4 - Multiple loops

Figure 3-5 - Stewart-Gough Platform
(note that dashed lines represent same
S-P-Sjoint combination as shown:

S= gpherical joint; P = prismatic joint)
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F=6(14-18-1)+ (12x3+6) -6 =6! Asexpected!

=

—

-
Figure 3-6 Revolute Figure 3-7 Spherical
-
Figure 3-8 Cylinarical Fiaure 3-9 Rectanaular

3.2 Serial Robot Types

Serial robots can be classified as revolute, spherical, cylindrical, or rectangular
(trandational, prismatic, or Cartesian). These classifications describe the primary DOF
(degrees-of-freedom) which accomplish the global motion as opposed to the distal (final)
joints that accomplish the local, primarily orientation, motion.

3.3 Serial Robot Types
There are numerous parallel robot types. Some of these will be examined later.
3.4 Open Chain Link Coordinates

According to the conventional Denavit-Hartenberg (D-H) notation (Denavit, J. and
Hartenberg, "A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices," J.
of Applied Mechanics, June, 1955, pp. 215-221.), only four parameters (a, d, 6, a) are
necessary to define aframe in space (or joint axis) relative to areference frame:

a = minimum distance between line L (the z axis of next frame) and z axis
(mutually orthogonal line between line L and z axis)

o
I

distance along z axis from z origin to minimum distance intersection point
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8 = angle between x-z plane and plane containing z axis and minimum distance
line

a = anglebetweenzaxisand L

V4

Figure 3-10 Conventional D-H parameters

Alternatively we can define aline by any point P on the line and its direction unit vector
n. Thisrequires 5 parameters since n,2 + ny2 + N2 =1.

z

P(x.y.2)

Figure 3-11 Point vector line description
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The Denavit-Hartenberg parametric description of lines can be extended to represent
frame coordinates for a kinematic chain of revolute and translationa joints - consider the
figure below. Note that there are several forms of these parameters being applied to the
forward and inverse kinematics of serial mechanisms.

Joint i+1

Figure 3-12 Conventional D-H notation for serial links/joints

Each link i has an inward joint i and an outward joint i +1. The coordinate system is
established beginning at joint 1, the input joint, and numbering outward. For arevolute
robot the coordinate z axis for each link lies colinear with the axis of rotation. The x axis
is established by the miminum distance line between the current z axis and the z axis of
theinner joint. aisthe minimum distance between the two consecutive z axes. The axes
are numbered such that the i -1 axes are associated with the it" joint of the it link ( and
thus describes the displacement of the previous link). The set of axes established for a
PUMA robot is shown as follows.

Figure 3- 13 Puma robot
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Joint a di 0 Q; Range
1 0 0 90 -90 -150 to 150
2 432 149.5 0 0 -22510 45
3 0 0 90 90 -45t0 225
4 0 432 0 -90 -110to 170
5 0 0 0 90 -100 to 100
6 0 55.5 0 0 -265 to 265

Figure 3-14 PUMA D-H parameters
Using the D-H representation, the four parameters are described as

6; = joint angle of x; axis relative to X;.; axiswith defined according to RH rule about
zj1 axis.

d; = distance from the origin of the i-1 axes to the intersection of the z;_4 axis with the
X; axis and measured along the z;_; axis.

g = minimum distance between z;_4 and z;.

0; = offset angle of z; axis relative to zj_; axis measured about the x; axis using RH

rule.
Zi-1
QJ o : Line=z; axis
; i
' y; defined by RH coord triad
~— ““/ yN
v "
Oi / T
Xi-1

Figure 3-15 D-H frame notation

For revolute joints 6; is the joint variable with d;, &, and a; constant. For prismatic joints
thejoint variableis dj with 6;, g, and a; constant (g; istypically zero)
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Given arevolute joint a point X; located on the ith link can be located in i - 1 axes by the
following transformation set which consist of four homogeneous transformations (2
rotations and 2 trandlations). The set that will accomplish thisis

Ai =H(d,zi.1) H(6,zi.1) H(a,x;)) H(a,x;) (i=1,..n) (3.7)
where
1 0 0O
Oca, -sa; O
H (o xi) = Osa, co, O
00 0 1
100 a
y=10100
0001
cO, -6, 00
B c6. 00
H 9,2-. = i i
®z0=17" 9 10
O 0 01

10
1
H(22)=9g
00

Applying the matrix multiplication of (3.2),

cO, -ca,s0, sa,;sB, ach,

_|9$9, cBca;, -sua,cO, ach,
ATl ca, d (38)

o o 0o 1

Class problem: What is the correct order in multiplying the four H transformation
matricesto get (3.8)?

Ai = 77
3.4.1 Other D-H Notation

The CODE system uses a set of D-H parameters that differ from the conventional set.
These are similar to Craig's D-H convention.

Referring to Figure 3.16, we note that four parameters must be specified:
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a = minimum distance between joint i axis (zj) and joint i-1 axis (zj-1)

di = distance from minimum distance line (xj.1 axis) to origin of ith joint frame
measured along z; axis.

aj = angle between z; and zj-; measured about previous joint frame x;.1 axis.
0; = angleabout z joint axis which rotates x;-1 to Xj axisin right hand sense.
The x; axisis the minimum distance line defined from z; to zj+1; z; is defined as the joint

rotation or translation axis axis and y; by the right hand rule (z; x x;). The origin of each
joint frameis defined by the minimum distance line intersection on the joint axis.

Joint i

Joint i+1

\

e

Figure 3-16 Revised D-H parameters

The transformation for this set of D-H parametersis

c6, -8, O a
sB,ca; cb,ca, -sa; -so,d,
s9.sa; cbsa;, ca, ca,d

0 0 0 1

A = (3.9)

Class problem: derive the set of D-H parameters for the Pumarobot being considered.
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3.5 Forward Kinematicsfor Serial Robots
Given the A transformation matrices of one joint axes relative to the preceding axes, one

can relate any point in the ith link to the globa reference frame by the following
transformation set. Letv; beapoint fixed to theith link. Itscoordinates u; in global axes

are (n=#DOF)
ui=A;1 Ao Ajvi (i=12,..n) (3.10)

Typically we represent the set of transformations above by a single matrix caled the T
matrix

Ti=A1 Az A = []A, (3.11)

I

The T matrix locating the gripper frameis
Th= A, (3.12)

I

The subscript n may be dropped for simplicity.
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Figure 3-17 The gripper frame

Examining the gripper coordinates in the PUMA figure shown previously (Xe, Ve, Zs), the
zg axiswill typically denote the gripper approach direction while the yg axis denotes the
dliding direction. Examining T, the first 3 columns describe the frame direction cosines
of Xg, Ve, Zg relative to global (or base) frame whereas the 4th column locates the Xg, Vs, Zs
origin relative to global frame.

3.5.1 Forward kinematics using alternative D-H notation

Using homogeneous transformations between the serial links of a robot the pose of atool
frame at the end of the robot can be determined by the equation

T =A1AA3..AG (3.13)
where T locates the tool relative to the robot base frame and G locates the tool relative to
the last joint/link frame. Note that the joint frames are usually oriented such that the

rotation or translation takes place about the joint z axis.

Question: Why is G required in the alternative notation, but not in the original D-H
notation?

In forward kinematics the joint tranglation or rotation is specified directly and the tool is
commanded to the pose described mathematically by T since each A; is known. Forward

kinematicsis used in teach pendant programming.

3.6 InverseKinematicsfor Serial Robots
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Inverse kinematics raises the opposite question: Given that | know the desired pose of the
tool, what are the joint values required to move the tool to the pose?

Mathematically, we rearrange equation (3.13) so that we isolate the homogeneous
transformations that are a function of the unknown joint values and somehow solve for
the joint values by applying the following equation:

(joint values unknown) A1AsA3..Ap= il (right side known) (3.19)

Inverse kinematics is used for controlling path following or in sensor directed motion
where atarget can be determined.

3.6.1 InverseKinematics—An Example

Since a function of the robot is to place objects in positions and orientations described in
global space, it is desired to determine the joint variables to accomplish this. This is
known as the inverse kinematics (invkin) problem. This section considers the inverse
kinematics solution for the PUMA manipulator.

The open loop equation for a six axis robot like the Pumais T = A; A,....As. where the
target pose T is known and the joint variables (6; in this case) which make up A; matrices
are unknown (and to be found).

The solution, calculated in two stages, first uses a position vector from the waist to the
wrist. This vector alows for the solution of the first three primary DOF that accomplish
the global motion. The last 3 DOF (secondary DOF) are found using the calculated
values of the first 3 DOF and the orientation matrices T4, Ts, and Te.

V4

0

Figure 3-18 Waist to wrist solution
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Let the gripper frame be defined by the unit vector triad n, a, and s (solution procedure in
Paul's textbook Robot Manipulators)

q=p-dsa (3.15)

It is assumed that p known and a known, since for a PUMA manipulator, T (the desired
global frame of the gripper) is of the form:

G530

(3.16)
where (e.g., Cy3= COS(GZ + 93))
Ny = C1[C23(C4 Cs Cp - S4 Sp) - Sz3 Ss Ce]
-53[84 C5 Ce +Cy Se] (3.1739)
Ny = S1[C23(C4 Cs Cg - S Sp) - Sa3 Ss Cg]
+C][S4 CsCs+Cy Sﬁ] (3.17b)
N, = -Sp3[C4 Cs Cg - S5 Se] - C23 S5 Co (3.17c)
sx = Cq[-C23(C4 C5 Sg + Sy Cp) + S23 S5 Sg]
-S1[-S4 Cs Sg + C4 Cg] (3.17d)
sy = S1[-Cp3(C4 Cs Sg + S4 Cp) + Sp3 Ss S¢]
+C][-S4 Cs S+ Cy Ce] (3.176)
2= S23(C4 Cs5 Sg + Sy Cg) + C23 S5 S (3.17f)
3 = C1(Ca3 C4 S5 + Sp3 Cs) - S1 S4 S5 (3.179)
8y = S1(C23 C4 S5 + S23 C5) + C1 S4 Ss (3.17h)
8;,=-Sp3 C4 S5+ C3 Gy (3.17i)

Px = C1[de(C23 Ca S5 + Sp3 Cs) +Sp3 dg + & Co] - Sa(de Sa Ss + o) (3.17))
Py = S1[de(C23 Cs S5 + S23 Cs) +Sp3 ds + 8 Co] + Cy(ds Sa Ss + d)  (3.17k)
Pz =06 (Co3 Cs- Sp3 CqSp) + Co s - S (3.171)

Now setting 64 =65=065=0 and dgz =0 we get the components of g from (3.17j) -
(3.271).

q :p]94:95:96:d6:0
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or by applying (3.8)

Ox =C1(dg Sz + 3 Cp) -dr Sy (3.183)
Oy =Sy (dg Sz + 3 Co) +dr Cy (3.18b)
Q:=ds C3-2 S (3.18c)

Now 6, can be determined from 0x and ¢y components. Let A = d4 Sy3 + & Cp; thus,
k=CiA-d S

qy=Sl)\+d2C1

It can be shown that A = + /g +q; —d> and that

91=tal’l'1l—)\ G - % q"]

N+ b g, (useatan2 (-< B < 1) (3.19)

where (3.19) is calculated using the four quadrant atan2 function. One notes from (3.19)
that 2 solutions exist: + for left shoulder PUMA; - for right shoulder PUMA. The
solution for 83 can be found by squaring the (3.18) components and adding to find sin 83,
then finding

cos 63 = sqrt[ 1 - sin03]

0, = tan* [ q; +q; +q;-d;-a5-d; ] (3.20)

+[adZaZ - (02 +q2 +q2 -2 - a2 - d2)°

The + soln is for the e bow above hand whereas the - soln is for the elbow below hand.

Now, given 63 (and Sz and C3), we can expand Co3 and Sp3 and finally arrive at (use
atan2)

B8, =tan-1

-[qZ (3 +ds S3)-ds C3 (i“/ Q2 + g2 - dy? )]]

0 ds Cg - (& + dg Sg) (i Va2 +q2 - d,? ) (3.21)

The - soln corresponds to the left arm configuration, + soln corresponds to right arm
configuration.

Obviously knowing 01, 85, and 83 permits definition of °T3_. To determine
04, B85, and B we assume that an approach direction is known (a known) and that hand

3-14



orientation is specified (n, s). For the PUMA robot we can arrange the joint axes such
that

4 [zzxa | (z4 axis direction cosines) (3.22)
Zs=a (zs axis direction cosines) (3.23)
Y6=S (e axis direction cosines) (3.24)

Now given the above criteria, we can solve for 8, from

Ca=y3-24 (=ys ' 2a)
S4=-X3 " 24 (= -x3 " 24)

Determine X3 and y3 from 1st and 2nd columns of °T3 to get (use atan2)

C1 8y - S1 8
C1Caa+tS1C3a-S3& (3.25)

04 =tan-1

Given 6,4 we can determine °T 4. In asimilar fashion asfor 6, we can determine 0.
Now given 64, °T4 isdefined (and so isX4, Y4, and zy).
Now Sg=x4 -aand Cg =-y, - a so that (use atan2)

C1 C23 C4 - S1 S4) 3 +(S1 Co3 C4 + C1 Sq) 3y - C4 S23 & |

(
= -1
05 =tan G Smatsissa tina | (3.26)

Now if 65 = O, a degenerate case results in which a 5-axis robot would be sufficient since
joint 5is not needed. To solve for Bg align yg with sso that S =yg-nand Cg=ysg-S

where ys comes from TS and n and scomefrom T. We get (use atan2)

06 = tan'l[_(slc"' + C1C23Sa)nx+ (-C1C4 -S1C23Sa)ny + (SaSzs)n; |
-(S1Ca + C1C23S4)sx +(C1Ca -S1C23Su)sy + (SaSpa)s, | (3.27)

3.7 Kinematics Summary for Serial Robots
Both forward and inverse kinematics are important to robotics. The robot teach-pendant

uses direct joint control to place the robot tool at desired poses in space. It is a form of
forward kinematics control.
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When the target for an end-effector tool is specified directly, either by a sensor or as the
robot interpolates moves along specified curvilinear paths in space, it requires invkin
solutions to generate the necessary joint values.

D-H parameters provide a simple way of relating joint frames relative to each other,
although more than one D-H form proliferate the application methods. The invkin
solutions can be complex depending on the robot structure.

3.8 Forward Kinematicsfor Parallel Robots

A paralel mechanism is symmetrica if:
* number of limbsis equal to the number of degrees-of-freedom of the moving platform

* joint type and joint sequence in each limb is the same
* number and location of the actuated jointsis the same.

Otherwise, the mechanism is asymmetrical. We will examine the kinematics for
symmetrical mechanisms.

We define several terms:

limb = a serial combination of links and joints between ground and the moving rigid
platform

connectivity of a limb (Cy) = degrees-of-freedom
associated with al jointsinalimb

Observation of symmetrical mechanisms will establish
that

y'c, :Zfi (3.28)

where j is the number of joints in the parallel mechanism
and m is the number of limbs. It is also observed that the
connectivity of each limb should not exceed the motion parameter (A) and not be less
than the degrees-of-freedom of the moving platform (F), leading to
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A=C=F  (3.29)

Example - University of
Maryland Mechanism (or
ABB Picker robot)

The general  degrees-of-
freedom equation (3.3) does
not apply to this robot
because of the symmetry of
the design and other
constraints. This robot has 3
trandlational degrees-of -
freedom, with a rotational
orientation joint added to the
center of the moving
platform in the commercial
version.

Figures 3-20 and 3-21 depict
the notation for anaysis of Figure 3-20 Maryland robot schematic
the robot kinematics. We
define a limb coordinate
system as X;,y;,z, orienting the limb base
point A; relative to the fixed robot base frame
A 16: Moving platform X,y,z by the orientation angle @. The limb's
revolute joints are labeled as 0y, 04, etc..
wherei defines the limb number.

Examining Figures 3-20 and 3-21, we can
write aloop closure equation:

AB; + BC; = 0OP + PC; - OA; (3.30)

Expressing (3.30) in the limb i coordinate
frame, we get

bch,;
a£1i + b£3i S(eli + e2i)

c
=|c (3.31)
c

0: Fixed base

aCeli + b£3i C(eli + e2i ):|

Figure 3-21 Maryland limb schematic
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Cyi Cp. SO, 0 Py h-r
G=|Cy|=|-s¢ cg Ofp, |+l O (332
Czi O O 1 pz O

where ¢; locates C; relative to limb coordinate frame and p locates P relative to the x,y,z
base frame. Note that 63 represents the out of plane motion of point C;.

The forward kinematics (or direct kinematics as referred to in Tsai's book) can be
determined by specifying the angles 611, 812, and 6:3. The problem is to determine the
position x,y,z of point P.

First note that for a given angle 8;; that point P will lie on a sphere centered at By', which
is offset in the horizontal direction from C; to P by a distance h, Figure 3-22.

Considering the 3 limbs P must lie on the
intersection of three such spheres. There
are four possibilities:

Generic solution - spheres intersect at
two points, giving two solutions (one
sphere intersects circle of intersection
of two other spheres)

Sngular solution - one sphere is
tangent to circle of intersection of two
other spheres

Sngular solution - center of any two of
the three spheres coincide, resulting in
an infinite number of solutions. The
structural design will preclude this

Figure 3-22 Forward solution

happening. An example of such a problem is when the independent joints are al 12
andr =h.

No solution - three spheres do not intersect

We can rearrange (3.31) and (3.32) to obtain

bsB, c(8; +6,) cy s Of p, -ach,; +h-r
bch,; =|-sp cp Ofp, |+ 0 (3.33)
bsdy (6, +6;) 0 01 p, -ashy
and then square the three components to get the equation:
b= p + p,” + P -2(px €@ + Py SP) (@COy + 1 -h) -
2p, ashy + (achy + r -h) 2 + & 0y (3.34)
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This equation represents the sphere for link i. We now apply (3.34) for links 1 and j (2 or
3) and then solve them simultaneously to get 2 equations (j = 2 and j =3):

ey Px+ e +pPytesp +ey=0 (=23 (3.35)
where

e =2cq (acy +r-h)-2ce (acbi +r-h) (3.36)

& =2s§ (achy +r-h) - 2sp (achyy +r-h) (3.37)

€3 = 2a0y - 22011 (3.38)

€4 = (@B +r-h)?+ & 011 - (@cBy + r-h) - & S0y (3.39)

Note that the form in (3.36) is the equation of a plane since 811 , 6:2 ,and 6,3 are known. If
we generate (3.35) for both j = 2 and j = 3, then solve for the intersection of two planes,
we get the equation of a line. We then intersect this line with one of the spheres to
generate two solutions. Equivalently, the quadratic equation for these two solutions can
be found by solving the two equations represented by (3.35) for p, and p, in terms of p;,
and then substituting into (3.34) to get

kKop” + Kipx + ko =0 (3.40)
where the quadratic coefficients are

Ko=1+1 2771 2+1 21 5°

ki=21ol o/l 2+21 3l 4l -2 50p-2135l 150/ 12-2al 45011/ | »

ko=1g2-0%+1 71 2 +1 %1 2+ 01-21 ol s/ | 5-2al 3591/ | 5

and

lo = expesz-exen P

G
|1 = ezepn-epes

Ty

|2 = exes-exen
|3 = exen-exnes T
|4 = epexs-ezexn O

l's = acBu+r-h Figure 3-23 Closing the

gripper to platformloop

The solution cases are
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kq®-4kok2> 0, two solutions

e ki?-4ko ko =0, onesolution

 kq®-4kok2<0,nosolution

Once py isfound in (3.40), then you determine py and p, by back substitution into (3.35).
3.8.1 Forward Kinematics | mplementation

How would you use a teach pendant to drive this robot? In reality you would probably
not command the joints directly, but most likely command trandations in the u, v, and w
directions. Thus, you would not likely drive thisrobot using forward kinematics but
only apply inver se kinematics.

3.9 InverseKinematicsfor the Maryland/Picker Parallel Robot

We assume that the position vector p is given. The problem is to find the joint angles to
place point P at p. In reality, the gripper would not be located at P, but be attached to the
moving platform. This is determined by gripper frame G relative to the platform
coordinate axes.

A target frame is specified as T. We determine the target for the platform coordinate axes
as shown in Figure 3-23. The frame for point P is determined from the fourth column of
T, =TG™". We designate this vector asp.
Given p we determine the location of point Ci. This is simple because the moving
platform cannot rotate and thus the line between P and C; trandlates only. Thus, given P
(as determined by p) and the distance h, we can determine C; as displaced from P by a
vector of length h that is parallel to x;.
The locus of motion of link B;C; is a sphere with center at C; and radius b. The figure
shown in the text as Figure 3.12 is deceiving because it is presented two-dimensionally. It
can only beinterpreted in 3-D.
From (3.31) we can determine two solutions for 83 as

B3 = cos(cyilb) (3.41)

Tsai confuses the inverse kinematics solution, since you should only choose a positive
solution for B3;.

Why?

Given B3 we can determine an equation for 8, by summing the squares of (3.31) to get
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2ab By 0By + & + bP = ¢i% + ¢ + ¢y (3.42)
which leads to a solution for 6, as
B, = cos (k) (3.43)

where K = (cq° + G;i° + Ci° - & - b?)/(2ab sBs). Physically, we can determine two
solutions for B, ("+" angle and "-" angle similar to elbow up/down case).

The two solutions for 6;; can be determined from (3.31) by expanding the double angle
formulas, solving for the sine and cosine of B6;; and then using the atan2 function to get
e]_i.

It is possible that the target frame may fall outside the robot's reach; thus, we must
examine the special cases:

* Generic solution - circle of link AB intersects the sphere at two points, giving two
solutions.

» Singular solution - circle tangent to sphere resulting in one solution.
» Sngular solution - circle lies on sphere -- physically unreadlistic case!

* No solution - circle and sphere do not intersect

3.10 Kinematics Summary for Parallel Robots
Both the forward and inverse kinematics can pose difficult solutions. It is helpful to

understand the geometry of motion, because this provides insights into the kinematics
solutions. Grubler's Criterion does not readily apply to this class of complex mechanisms.
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