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3 ROBOT KINEMATICS 

 
Purpose: 
 

The purpose of this chapter is to introduce you to robot kinematics, and the concepts 
related to both open and closed kinematics chains. Forward kinematics is 
distinguished from inverse kinematics. 

 

3.1 Kinematics Chains 

Mechanisms can be configured as kinematics chains. The chain is closed when the 
ground link begins and ends the chain; otherwise, it is open. 

3.1.1 Serial robots 

The manipulator of a serial robot is, in general, an open kinematics chain.  The joints 
must be controlled individually. 
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Figure 3-1  Set of serial links connected by joints 
 
Assuming binary pair joints (joints supporting 2 links), the degrees-of-freedom (F) of a 
mechanism is governed by the equation 
 

 F = λ (n - 1) - ∑
=

j

1i
ic  (3.1) 

 
where 
 
 F = mechanism degrees-of-freedom 
 
 n = number of mechanism links 
 
 j = number of mechanism joints 
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Figure 3-3 - Planar robot 

Figure 3-2 - ABB 6-axis robot 

 ci = number of constraints imposed by joint i 
 
 fi = degrees-of-freedom permitted by joint i 
 
 ji = number of joints with i degrees-of-freedom 
 
 λ = degrees-of-freedom in space in which 
mechanism functions 
 
It is also true that  
 
 λ = ci + fi  (3.2) 
 
which leads to Grubler's Citerion: 
 

 F = λ (n - j - 1) - ∑
=

j

1i
if  (3.3) 

 
Example - 6-axis revolute robot(ABB IRB 4400): 
 

 Using (3.1) and referencing Figure 3-2: 
 
 F = 6 (7 - 1) - 6 (5) = 6      "as expected" 
 
Note: that the degrees-of-freedom of the robot equals the 
number of moving links, which equals the number of 
joints.  To specify a unique manipulator configuration, 
each joint must be controlled. 
 
Example - 3 axis revolute planar robot: 
 
 Using (3.1) and referencing Figure 3-3: 
 
 F = 3 (3 - 1) - 2 (2) = 2  
 
 Why isn't the answer 3? 

3.1.2 Redundant degrees-of-freedom 

Grubler's Criterion is valid as long as there are no redundant joints. A redundant joint is 
one that is unnecessary because other joints can provide the needed position and/or 
orientation (see last 3 joints on IRB 4400). 
 
Redundant joints can generate passive degrees-of-freedom, which must be subtracted 
from Grubler's equation to get 
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Figure 3-5 - Stewart-Gough Platform 
(note that dashed lines represent same 
S-P-S joint combination as shown:  
 S = spherical joint; P = prismatic joint) 

Figure 3-4 - Multiple loops 

j = 8;  n = 7 
L = 8 - 7 + 1 = 2 

 F = λ (n - j - 1) - ∑
=

j

1i
if  - fp (3.4) 

Example: Quicktime video of robot. Shows how last joints can be configured to avoid 
redundancy during robot task motion. 

3.1.3 Loop Mobility Criterion 

Consider Figure 3-4. Some of the links 
have more than two joints, leading to 
multiple loops. The number of 
independent loops is the total number of 
loops excluding the external loop. For 
multiple loop chains it is true that j = n + 
L -1 which gives Euler's equation: 
 
 L = j - n + 1 (3.5) 
 
Figure 3-4 applies this equation for a 2 
loop mechanism.  
 
Combining (3.5) with Grubler's Criterion, 
we get the Loop Mobility Criterion: 

 ∑ fi = F + λ L (3.6) 

3.1.4 Parallel robots 

A parallel robot is a closed loop chain, 
whereas a serial robot is an open loop 
chain. A hybrid mechanism is one with 
both closed and open chains. 
 
Example - Figure 3-5 shows the Stewart-
Gough platform. Determine the degrees-
of-freedom. Note that each S-P-S 
combination generates a passive degree-
of-freedom. Thus,  
 
    λ  = 6;  n = 14;  j1 = 6;  j3 = 12; 
 
    fp = 6 
 
Then, 
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   F = 6(14 - 18 -1) + (12x3 + 6) - 6  = 6!     As expected! 

3.2 Serial Robot Types 

Serial robots can be classified as revolute, spherical, cylindrical, or rectangular 
(translational, prismatic, or Cartesian).  These classifications describe the primary DOF 
(degrees-of-freedom) which accomplish the global motion as opposed to the distal (final) 
joints that accomplish the local, primarily orientation, motion. 

3.3 Serial Robot Types 

There are numerous parallel robot types. Some of these will be examined later. 

3.4 Open Chain Link Coordinates 

According to the conventional Denavit-Hartenberg (D-H) notation (Denavit, J. and 
Hartenberg, "A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices,"  J. 
of Applied Mechanics, June, 1955, pp. 215-221.), only four parameters (a, d, θ, α) are 
necessary to define a frame in space (or joint axis) relative to a reference frame: 
 

a   = minimum distance between line L (the z axis of next frame) and z axis 
(mutually  orthogonal line between line L and z axis) 

 
d   = distance along z axis from z origin to minimum distance intersection point 
 

Figure 3-7 Spherical Figure 3-6 Revolute 

Figure 3-8 Cylindrical Figure 3-9 Rectangular 
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θ   =   angle between x-z plane and plane containing z axis and minimum distance 
line 

 
α   = angle between z axis and L 
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Figure 3-10  Conventional D-H parameters 
 
Alternatively we can define a line by any point P on the line and its direction unit vector 
n.  This requires 5 parameters since nx  2 + ny  2 + nz  2 =1. 
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Figure 3-11  Point vector line description 
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The Denavit-Hartenberg parametric description of lines can be extended to represent 
frame coordinates for a kinematic chain of revolute and translational joints - consider the 
figure below. Note that there are several forms of these parameters being applied to the 
forward and inverse kinematics of serial mechanisms. 

Joint i

Joint i-1

Joint i+1

ai

αi

θi

z

z z

i-1

i i+1

x i+1

Link i+1

xi-1

xi
di

Link i

 
Figure 3-12  Conventional D-H notation for serial links/joints 

 
Each link i has an inward joint i and an outward joint i +1.  The coordinate system is 
established beginning at joint 1, the input joint, and numbering outward.  For a revolute 
robot the coordinate z axis for each link lies colinear with the axis of rotation.  The x axis 
is established by the miminum distance line between the current z axis and the z axis of 
the inner joint.  a is the minimum distance between the two consecutive z axes.  The axes 
are numbered such that the i -1 axes are associated with the ith  joint of the ith  link ( and 
thus describes the displacement of the previous link).  The set of axes established for a 
PUMA robot is shown as follows.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3- 13 Puma robot 
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Joint ai di θi αi Range 
 

1 0 0 90 -90 -150 to 150 
2 432 149.5 0 0 -225 to 45 
3 0 0 90 90 -45 to 225 
4 0 432 0 -90 -110 to 170 
5 0 0 0 90 -100 to 100 
6 0 55.5 0 0 -265 to 265 
 

Figure 3-14  PUMA D-H parameters 
 
Using the D-H representation, the four parameters are described as  
 

θi = joint angle of xi axis relative to xi-1 axis with  defined according to RH rule about 
zi-1 axis. 

 
di = distance from the origin of the i-1 axes to the intersection of the zi-1 axis with the 

xi axis and measured along the zi-1 axis. 
 
ai = minimum distance between zi-1 and zi. 
 
αi = offset angle of  zi axis relative to zi-1 axis measured about the xi axis using RH 

rule. 
 
 

z

α
d

x

x

z

y   defined by RH coord triad

Line = z   axis

i - 1

 i - 1

θ i

θ i

a

y i-1

i
i

i

i

i

i
i

 
Figure 3-15  D-H frame notation 

 
For revolute joints θi is the joint variable with di, ai, and αi constant.  For prismatic joints 
the joint variable is  di with θi, ai, and αi constant (ai is typically zero) 
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Given a revolute joint a point x i located on the ith link can be located in i - 1 axes by the 
following transformation set which consist of four homogeneous transformations (2 
rotations and 2 translations).  The set that will accomplish this is  
 
 Ai = H(d,zi-1) H(θ,z i-1) H(a ,xi) H(α,x i)          (i = 1, ...n) (3.7) 
 
where  
 

 H (α, xi) = 
















αα
αα

1000
0cs0
0s-c0
0001

ii

ii  

 

 H (a, xi) = 

















1000
0100
0010
a001 i

 

 

 H (θ, zi-1) = 















θθ
θθ

1000
0100
00cs
00s-c

ii

ii

 

 

 H (d, zi-1) =

















1000
d100
0010
0001

i
 

 
Applying the matrix multiplication of (3.2), 
 

 Ai = 
















αα
θθααθθ
θθαθαθ

1000
dcs0
cacs-ccs
casssc-c

iii

iiiiiii

iiiiiii

 (3.8) 

 
Class problem: What is the correct order in multiplying the four H transformation 
matrices to get (3.8)? 
 
 Ai =  ?? 

3.4.1 Other D-H Notation 

The CODE system uses a set of D-H parameters that differ from the conventional set. 
These are similar to Craig’s D-H convention. 
 
Referring to Figure 3.16, we note that four parameters must be specified: 
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ai  =  minimum distance between joint i axis (zi) and joint i-1 axis (zi-1) 
 
di  =  distance from minimum distance line (xi-1 axis) to origin of ith joint frame  

measured along zi axis. 
 
αi  =  angle between zi and zi-1 measured about previous joint frame xi-1 axis. 
 
θi  =  angle about zi joint axis which rotates xi-1 to xi axis in right hand sense. 

 
The xi axis is the minimum distance line defined from zi to zi+1; zi is defined as the joint 
rotation or translation axis axis and yi by the right hand rule (zi x xi).  The origin of each 
joint frame is defined by the minimum distance line intersection on the joint axis. 
 

Joint i

Joint i-1

Joint i+1

a

α

θ

z

z z

i-1
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i
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i

i

i

i
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Figure 3-16  Revised D-H parameters 
 
The transformation for this set of D-H parameters is 
 

 Ai = 
















αααθαθ
αααθαθ

θθ

1000
dccscss
ds-s-cccs

a0s-c

iiiiiii

iiiiiii

iii

 (3.9) 

 
Class problem: derive the set of D-H parameters for the Puma robot being considered. 
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3.5 Forward Kinematics for Serial Robots 

Given the A transformation matrices of one joint axes relative to the preceding axes, one 
can relate any point in the ith link to the global reference frame by the following 
transformation set.  Let vi  be a point fixed to the ith  link.  Its coordinates ui in global axes 
are (n = # DOF) 
 
 ui = A1 A2....Ai vi        ( i = 1, 2, ... n) (3.10) 
 
Typically we represent the set of transformations above by a single matrix called the T 
matrix 
 

 Ti = A1 A2....Ai =  ∏
=

i

11j
jA  (3.11) 

 
The T matrix locating the gripper frame is  

 Tn =  ∏
=

n

11j
jA  (3.12) 

 
The subscript n may be dropped for simplicity. 
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Figure 3-17  The gripper frame 
 
Examining the gripper coordinates in the PUMA figure shown previously (x6, y6, z6), the 
z6 axis will  typically denote the gripper approach direction while the y6 axis denotes the 
sliding direction.  Examining T, the first 3 columns describe the frame direction cosines 
of x6, y6, z6 relative to global (or base) frame whereas the 4th column locates the x6, y6, z6 
origin relative to global frame. 

3.5.1 Forward kinematics using alternative D-H notation 

Using homogeneous transformations between the serial links of a robot the pose of a tool 
frame at the end of the robot can be determined by the equation 
 
 T = A1A2A3...AnG (3.13) 
 
where T locates the tool relative to the robot base frame and G locates the tool relative to 
the last joint/link frame.  Note that the joint frames are usually oriented such that the 
rotation or translation takes place about the joint z axis. 
 
Question: Why is G required in the alternative notation, but not in the original D-H 
notation? 
 
In forward kinematics the joint translation or rotation is specified directly and the tool is 
commanded to the pose described mathematically by T since each Ai is known. Forward 
kinematics is used in teach pendant programming. 

3.6 Inverse Kinematics for Serial Robots 
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Inverse kinematics raises the opposite question: Given that I know the desired pose of the 
tool, what are the joint values required to move the tool to the pose? 
 
Mathematically, we rearrange equation (3.13) so that we isolate the homogeneous 
transformations that are a function of the unknown joint values and somehow solve for 
the joint values by applying the following equation: 
 

(joint values unknown)  A1A2A3...An = G-1T  (right side known) (3.14) 
 
Inverse kinematics is used for controlling path following or in sensor directed motion 
where a target can be determined. 

3.6.1 Inverse Kinematics – An Example 

Since a function of the robot is to place objects in positions and orientations described in 
global space, it is desired to determine the joint variables to accomplish this.  This is 
known as the inverse kinematics (invkin) problem. This section considers the inverse 
kinematics solution for the PUMA manipulator.  
 
The open loop equation for a six axis robot like the Puma is T = A1 A2....A6. where the 
target pose T is known and the joint variables (θi in this case) which make up Ai matrices 
are unknown (and to be found). 
 
The solution, calculated in two stages, first uses a position vector from the waist to the 
wrist.  This vector allows for the solution of the first three primary DOF that accomplish 
the global motion.  The last 3 DOF (secondary DOF) are found using the calculated 
values of the first 3 DOF and the orientation matrices T4, T5, and T6. 
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Figure 3-18  Waist to wrist solution 
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Let the gripper frame be defined by the unit vector triad n, a, and s (solution procedure in 
Paul's textbook Robot Manipulators) 
 
 q = p - d6a (3.15) 
 
It is assumed that p known and a known, since for a PUMA manipulator, T (the desired 
global frame of the gripper) is of the form: 
 

T = n  s  a  p
0  0  0  1

 (3.16) 
 
where (e.g., C23 = cos(θ2 + θ3)) 
 

 
nx = C1 C23 C4 C5 C6 - S4 S6  - S23 S5 C6

-S1 S4 C5 C6 + C4 S6                          (3.17a) 
 

 

ny = S1 C23 C4 C5 C6 - S4 S6  - S23 S5 C6
+C1 S4 C5 C6 + C4 S6                          (3.17b) 

  
 nz = -S23 C4 C5 C6 - S4 S6  - C23 S5 C6 (3.17c) 
 

 
sx = C1 -C23 C4 C5 S6 + S4 C6  + S23 S5 S6

-S1 -S4 C5 S6 + C4 C6                          (3.17d) 

 

sy = S1 -C23 C4 C5 S6 + S4 C6  + S23 S5 S6
+C1 -S4 C5 S6 + C4 C6                          (3.17e) 

 
 sz = S23 C4 C5 S6 + S4 C6  + C23 S5 S6 (3.17f) 
 
 ax = C1 C23 C4 S5 + S23 C5  - S1 S4 S5 (3.17g) 
 
 ay = S1 C23 C4 S5 + S23 C5  + C1 S4 S5 (3.17h) 
 
 az = -S23 C4 S5 + C23 C5  (3.17i) 
 
 px = C1 d6 C23 C4 S5 + S23 C5  +S23 d4 + a2 C2  - S1 d6 S4 S5 + d2    (3.17j) 
 
 py = S1 d6 C23 C4 S5 + S23 C5  +S23 d4 + a2 C2  + C1 d6 S4 S5 + d2    (3.17k) 
 
 pz = d6 C23 C5 -  S23 C4 S5  + C23 d4 - a2 S2 (3.17l) 
 
Now setting θ4 = θ5 = θ6 = 0  and   d6 = 0 we get the components of q from (3.17j) -
(3.17l). 
 

 q = p]θ4 = θ5 = θ6 = d6 = 0  
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or by applying (3.8) 
 
 qx = C1 (d4 S23 + a2 C2) - d2 S1 (3.18a) 
 qy = S1 (d4 S23 + a2 C2) + d2 C1 (3.18b) 

 qz = d4 C23 - a2 S2 (3.18c) 
 
Now θ, can be determined from qx and qy components.  Let  λ  = d4 S23 + a2 C2; thus, 
 

 qx = C1 λ  - d2 S1 
 
 qy = S1 λ + d2 C1 
 

It can be shown that λ = 2
2

2
y

2
x dqq −+±  and that 

 

 θ1 = tan -1 
λ  qy - d2 qx

λ  qx + d2 qy
                   (use atan2 (-π ≤ θ ≤  π) (3.19) 

 
where (3.19)  is calculated using the four quadrant atan2 function.  One notes from (3.19) 
that 2 solutions exist: + for left shoulder PUMA; - for right shoulder PUMA.  The 
solution for θ3 can be found by squaring the (3.18) components and adding to find sin θ3, 
then finding  
 
 cos θ3 = sqrt[ 1 - sin2θ3] 
 
 θ3 = tan-1                   (3.20) 
 
 
 
The + soln is for the elbow above hand whereas the - soln is for the elbow below hand. 
 
Now, given θ3 ( and S3 and  C3), we can expand C23 and S23 and finally arrive at  (use 
atan2) 
 

 

θ2 = tan -1 
- qz a2 + d4 S3  - d4 C3 ± qx  2  + qy  2  - d2

  2

qz d4 C3 - a2 + d4 S3  ± qx  2  + qy  2  - d2 
  2

 (3.21) 
 
The - soln corresponds to the left arm configuration, + soln corresponds to right arm 
configuration. 
 
Obviously knowing θ1, θ2, and θ3 permits definition of 0T3..  To determine 
θ4, θ5, and θ6 we assume that an approach direction is known (a known) and that hand 















)++(−±

++
22

2
2
2

2
4

2
z

2
y

2
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2
2

2
4

2
2

2
2

2
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2
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2
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2
x

d-a-d-qqqa4d

d-a-d-qqq
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orientation is specified (n, s).  For the PUMA robot we can arrange the joint axes such 
that 
 

 z4 = 
± (z3  x a)
|| z3 x a  ||        (z4 axis direction cosines) (3.22) 

 
 z5 = a                       (z5 axis direction cosines) (3.23) 
 
 y6 = s                      (y6 axis direction cosines) (3.24) 
 
Now given the above criteria, we can solve for θ4 from 
 

 C4 = y3 ·  z4         (= y3
  T z4) 

 S4 = -x3 ·  z4        (= -x3
  T z4) 

 
Determine x3 and y3 from 1st and 2nd columns of 0T3 to get (use atan2) 
 

 
θ4 = tan -1 

c1 ay - s1 ax
c1 c23 ax + s1 c23 ay - s23 az  (3.25) 

 
Given θ4 we can determine 0T4.  In a similar fashion as for θ4 we can determine θ5. 
 
Now given θ4, 0T4 is defined (and so is x4, y4, and  z4). 
 
Now S5 = x4 · a and C5 = -y4 · a  so that (use atan2) 
 

 
θ5 = tan -1 

c1 c23 c4 - s1 s4  ax + s1 c23 c4 + c1 s4  ay - c4 s23 az
c1 s23 ax + s1 s23 ay + c23 az  (3.26) 

 
Now if θ5 ≈ 0, a degenerate case results in which a 5-axis robot would be sufficient since 
joint 5 is not needed.  To solve for θ6 align y6 with s so that S6 = y5 · n and  C6 = y5 · s 

where y5 comes from T0
5 and n and s come from T.  We get (use atan2) 

 

 
θ6 = tan-1 - S1C4 + C1C23S4 nx+ -C1C4 -S1C23S4 ny + S4S23 nz

- S1C4 + C1C23S4 sx + C1C4 -S1C23S4 sy + S4S23 sz  (3.27) 

3.7 Kinematics Summary for Serial Robots 

Both forward and inverse kinematics are important to robotics. The robot teach-pendant 
uses direct joint control to place the robot tool at desired poses in space. It is a form of 
forward kinematics control. 
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When the target for an end-effector tool is specified directly, either by a sensor or as the 
robot interpolates moves along specified curvilinear paths in space, it requires invkin 
solutions to generate the necessary joint values. 
 
D-H parameters provide a simple way of relating joint frames relative to each other, 
although more than one D-H form proliferate the application methods. The invkin 
solutions can be complex depending on the robot structure. 

3.8 Forward Kinematics for Parallel Robots 

A parallel mechanism is symmetrical if: 
•  number of limbs is equal to the number of degrees-of-freedom of the moving platform 

•  joint type and joint sequence in each limb is the same 

•  number and location of the actuated joints is the same. 

Otherwise, the mechanism is asymmetrical. We will examine the kinematics for 
symmetrical mechanisms. 
 
We define several terms: 
 

limb = a serial combination of links and joints between ground and the moving rigid 
platform 
connectivity of a limb (Ck) = degrees-of-freedom 
associated with all joints in a limb 
 

Observation of symmetrical mechanisms will establish 
that 
 
 

 ∑
=

m

1k
kC =∑

=

j

1i
if            (3.28) 

 
where j is the number of joints in the parallel mechanism 
and m is the number of limbs. It is also observed that the 
connectivity of each limb should not exceed the motion parameter (λ) and not be less 
than the degrees-of-freedom of the moving platform (F), leading to 
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Figure 3-20 Maryland robot schematic 

Figure 3-21 Maryland limb schematic 

 
 λ ≥ Ck ≥ F (3.29) 
 
Example - University of 
Maryland Mechanism (or 
ABB Picker robot) 
 
The general degrees-of-
freedom equation (3.3) does 
not apply to this robot 
because of the symmetry of 
the design and other 
constraints. This robot has 3 
translational degrees-of-
freedom, with a rotational 
orientation joint added to the 
center of the moving 
platform in the commercial 
version. 
 
Figures 3-20 and 3-21 depict 
the notation for analysis of 
the robot kinematics. We 
define a limb coordinate 

system as xi,yi,zi, orienting the limb base 
point Ai relative to the fixed robot base frame 
x,y,z by the orientation angle φi. The limb's 
revolute joints are labeled as θ1i, θ2i, etc.. 
where i defines the limb number. 
 
Examining Figures 3-20 and 3-21, we can 
write a loop closure equation: 
 
   ABi + BCi = OP + PCi  - OAi           (3.30) 
 
Expressing (3.30) in the limb i coordinate 
frame, we get  
 














=















θ+θθ+θ
θ

θ+θθ+θ

zi

yi

xi

2i1i1i

2i1i1i

c
c
c

)  s( s b  s a
c b

)  c( s b  c a

3i

3i

3i

    (3.31) 
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Figure 3-22 Forward solution 

 ci = 











+




























φφ
φφ

=














0
0

r -h 

p
p
p

100
0cs-
0sc

c
c
c

z

y

x

ii

ii

zi

yi

xi

 (3.32) 

 
where ci locates Ci relative to limb coordinate frame and p locates P relative to the x,y,z 
base frame. Note that θ3i represents the out of plane motion of point Ci. 
 
The forward kinematics (or direct kinematics as referred to in Tsai's book) can be 
determined by specifying the angles θ11, θ12, and θ13. The problem is to determine the 
position x,y,z of point P. 
 
First note that for a given angle θ1i that point P will lie on a sphere centered at Bi', which 
is offset in the horizontal direction from Ci to P by a distance h, Figure 3-22. 
 
Considering the 3 limbs P must lie on the 
intersection of three such spheres. There 
are four possibilities: 
 
•  Generic solution - spheres intersect at 

two points, giving two solutions (one 
sphere intersects circle of intersection 
of two other spheres) 

•  Singular solution - one sphere is 
tangent to circle of intersection of two 
other spheres 

•  Singular solution - center of any two of 
the three spheres coincide, resulting in 
an infinite number of solutions. The 
structural design will preclude this 
happening. An example of such a problem is when the independent joints are all π/2 
and r = h. 

•  No solution - three spheres do not intersect 

We can rearrange (3.31) and (3.32) to obtain 

 














θ

+θ
+




























φφ
φφ

=














θ+θθ
θ

θ+θθ

1i

1i

z

y

x

ii

ii

2i1i

2i1i

s a-
0

r -h  c a-

p
p
p

100
0cs-
0sc

)  s( s b
c b

)  c( s b

3i

3i

3i

 (3.33) 

 
and then square the three components to get the equation: 
 
 b2 = px

2 + py
2 + pz

2 -2(px cφi + py sφi) (a cθ1i + r -h) -  
         2pz a sθ1i + (a cθ1i + r -h) 2 + a2 s2θ1i (3.34) 
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This equation represents the sphere for link i. We now apply (3.34) for links 1 and j (2 or 
3) and then solve them simultaneously to get 2 equations (j = 2 and j =3): 
 
 e1j px + e2j + py+ e3j pz + e4j = 0             (j = 2,3) (3.35) 
 
where 
 
 e1j = 2 cφj (a cθ1j + r -h) - 2 cφ1 (a cθ11 + r -h) (3.36) 
 
 e2j = 2 sφj (a cθ1j + r -h) - 2 sφ1 (a cθ11 + r -h) (3.37) 
 
 e3j = 2a sθ1j - 2a sθ11 (3.38) 
 
 e4j = (a cθ11 + r -h) 2 + a2 s2θ11 - (a cθ1j + r -h) 2 - a2 s2θ1j (3.39) 
 
Note that the form in (3.36) is the equation of a plane since θ11 , θ12 ,and θ13 are known. If 
we generate (3.35) for both j = 2 and j = 3, then solve for the intersection of two planes, 
we get the equation of a line. We then intersect this line with one of the spheres to 
generate two solutions. Equivalently, the quadratic equation for these two solutions can 
be found by solving the two equations represented by (3.35) for py and pz in terms of pz 
and then substituting into (3.34) to get 
 
 k0 px

2 + k1 px + k2 = 0 (3.40) 
 
where the quadratic coefficients are 
 
 ko = 1 + l1

2/ l2
2 + l4

2/ l2
2 

 
 k1 = 2 l0l1/l2

2 + 2 l3l4/l2
2 - 2l5 cφ1- 2 l5l1 sφ1/l2 - 2 al4 sθ11/l2 

 
 k2 = l5

2 - b2 + l0
2/ l2

2 + l3
2/ l2

2+ a2 s2θ11- 2 l0l5 sφ1/l2 - 2 al3 sθ11/l2 
 
and 
 
 l0 = e32 e43 - e33 e42 

 
 l1 = e13 e32 - e12 e33 

 
 l2 = e22 e33 - e23 e32 

 
 l3 = e23 e42 - e22 e43 

 
 l4 = e12 e23 - e13 e22 
 l5 = a cθ11 + r –h 
 
The solution cases are 

G 

T 

Tp 

Figure 3-23 Closing the 
gripper to platform loop 

P 
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•  k1

2 - 4k0 k2 > 0, two solutions 

•  k1
2 - 4k0 k2 = 0, one solution 

•  k1
2 - 4k0 k2 < 0, no solution 

Once px is found in (3.40), then you determine py and pz by back substitution into (3.35). 

3.8.1 Forward Kinematics Implementation 

How would you use a teach pendant to drive this robot? In reality you would probably 
not command the joints directly, but most likely command translations in the u, v, and w 
directions. Thus, you would not likely drive this robot using forward kinematics but 
only apply inverse kinematics. 

3.9 Inverse Kinematics for the Maryland/Picker Parallel Robot 

We assume that the position vector p is given. The problem is to find the joint angles to 
place point P at p. In reality, the gripper would not be located at P, but be attached to the 
moving platform. This is determined by gripper frame G relative to the platform 
coordinate axes. 
 
A target frame is specified as T. We determine the target for the platform coordinate axes 
as shown in Figure 3-23. The frame for point P is determined from the fourth column of 
Tp = TG-1. We designate this vector as p. 
 
Given p we determine the location of point Ci. This is simple because the moving 
platform cannot rotate and thus the line between P and Ci translates only. Thus, given P 
(as determined by p) and the distance h, we can determine Ci as displaced from P by a 
vector of length h that is parallel to xi. 
 
The locus of motion of link BiCi is a sphere with center at Ci and radius b. The figure 
shown in the text as Figure 3.12 is deceiving because it is presented two-dimensionally. It 
can only be interpreted in 3-D. 
 
From (3.31) we can determine two solutions for θ3i as 
 
 θ3i = cos-1(cyi/b) (3.41) 
 
Tsai confuses the inverse kinematics solution, since you should only choose a positive 
solution for θ3i. 
 
         Why? 
 
Given θ3i we can determine an equation for θ2i by summing the squares of (3.31) to get 
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    2ab sθ3i cθ2i + a2 + b2 =  cxi
2 + cyi

2 + czi
2 (3.42) 

 
which leads to a solution for θ2i as  
 
 θ2i = cos-1(κ) (3.43) 
 
where κ = (cxi

2 + cyi
2 + czi

2 - a2 - b2)/(2ab sθ3i). Physically, we can determine two 
solutions for θ2i ("+" angle and "-" angle similar to elbow up/down case). 
 
The two solutions for θ1i can be determined from (3.31) by expanding the double angle 
formulas, solving for the sine and cosine of θ1i and then using the atan2 function to get 
θ1i. 
 
It is possible that the target frame may fall outside the robot's reach; thus, we must 
examine the special cases: 
 
•  Generic solution - circle of link AB intersects the sphere at two points, giving two 

solutions. 

•  Singular solution - circle tangent to sphere resulting in one solution. 

•  Singular solution - circle lies on sphere -- physically unrealistic case! 

•  No solution - circle and sphere do not intersect 

3.10 Kinematics Summary for Parallel Robots 

Both the forward and inverse kinematics can pose difficult solutions. It is helpful to 
understand the geometry of motion, because this provides insights into the kinematics 
solutions. Grubler's Criterion does not readily apply to this class of complex mechanisms. 


