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Adaptive Control of Nonlinearly Parameterized
Systems: The Smooth Feedback Case

Wei Lin, Senior Member, IEEE,and Chunjiang Qian, Member, IEEE

Abstract—This paper studies global adaptive control ofnon-
linearly parameterizedsystems with uncontrollable linearization.
Using a new parameter separation technique and the tool of
adding a power integrator, we develop a feedback domination
design approach for the explicit construction of a smooth adaptive
controller that solves the problem of global state regulation. In
contrast to the existing results in the literature, a key feature of
our adaptive regulator is its minimum-order property, namely, no
matter how big the number of unknown parameters is, the order
of the dynamic compensator is identical to one, and is therefore
minimal. As a consequence, global state regulation of feedback lin-
earizable systems with nonlinear parameterization is achieved by
one-dimensional adaptive controllers, without imposing any extra
(e.g., convex/concave) conditions on the unknown parameters.

Index Terms—Adding a power integrator, global adaptive sta-
bilization, nonlinear parameterization, nonlinear systems with un-
controllable linearization, smooth feedback.

I. INTRODUCTION

A DAPTIVE control of nonlinear systems with parametric
uncertainty has been one of the active subjects in the field

of nonlinear control. Two recent books, [14] and [24], provide
a comprehensive report on the major developments in the area
of adaptive control of feedback linearizable systems withlinear
parameterization. By comparison, little progress has been made
for adaptive control ofnonlinearly parameterizedsystems in-
volving inherent nonlinearity, in the sense that the system may
be neither feedback linearizable nor affine in the control input,
and itslinearization is uncontrollable. As a matter of fact, even
in the case of feedback linearizable systems with nonlinear pa-
rameterization, very few results are available in the literature
and global adaptive regulation has remained largely open for
more than a decade.

As demonstrated in [1], [23], [2], and [4], nonlinear param-
eterization can be found in various practical control problems.
For instance, it arises naturally in physical systems such as bio-
chemical processes [4] and machines with friction [1]. Dealing
with this type ofnonlinearly parameterizeddynamic systems
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is not only interesting theoretically (as it represents a challenge
for adaptive control), but also important from a viewpoint of
practical applications. In the past few years, several researchers
started working on this difficult problem and obtained some in-
teresting results [23], [2], [16], [17], [4]. It must be noticed, how-
ever, that most of the results were derived under various condi-
tions imposed on the unknown parameters. One of common as-
sumptions is thatbound of the nonlinear parameters is known.
Under such a condition, the problem of global adaptive control
by output feedback was solved for nonlinearly parameterized
systems [23]. The other condition is the so-calledconvex/con-
caveparameterization which has been assumed in [2], [16], and
[17], where a min–max strategy was proposed for the design of
adaptive tracking controllers. However, without imposing any
condition on the parameters, global adaptive regulation ofnon-
linearly parameterizedsystems has been recognized as a chal-
lenging open problem, particularly in the case of nonlinear sys-
tems withuncontrollable linearization.

To address this difficult issue, new nonlinear adaptive control
strategies must be developed. This is because most of the
adaptive control schemes [14], [24], [25], and [18], on one
hand, rely heavily onlinear parameterization, and on the other
hand, they are only applicable tofeedback linearizablesystems
in a triangular form [14], [24], [25], [18], [17]. The feedback
linearizable condition was relaxed in [20], where a solution
to the problem of global adaptive regulation was given for
linearly parameterized, high-order systems. The progress was
made possible due to the development of a novel feedback
design technique calledadding a power integrator, which
was motivated by homogeneous feedback stabilization [3],
[8], [9], [12], [13], [6], [7] and proposed initially in [19] for
global stabilization of nonlinear systems with uncontrollable
linearization. It turns out that this technique is also useful in
solving adaptive regulation of high-order systems [20]. The
essential idea behind adding a power integrator is that the
feedback domination design, instead of feedback cancellation,
is employed to deal with the nonlinearities of the system. While
the backstepping design [14], [24] is only applicable to feedback
linearizable systems, the adding a power integrator technique
[19], [20] appears to be extremely powerful in dealing with
a class of inherently nonlinear systems with uncontrollable
linearization.

On the other hand, to deal withnonlinear parameterization,
one must devise an innovative way to overcome the obstacle
caused by the unknown nonlinear parameters which are ex-
ceptionally difficult to estimate. Of course, one way is to find
a transformation which transforms nonlinearly parameterized
systems into systems with a linear parameterization. However,
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this is not a trivial task and there is no systematic method avail-
able currently. Another possible method is to impose certain
conditions on the system parameters such as convex/concave
parameterization, as done in [2] and [17].

In this paper, we present a new approach to deal with general
nonlinear parameterizations. First, we show that for every con-
tinuous function with nonlinear parameters, it is always possible
to “separate” the nonlinear parameters from the nonlinear func-
tion. Then, in order to effectively use this parameter separation
technique for the design of adaptive control systems, we modify
the tool of adding a power integrator accordingly. A key feature
of the adding a power integrator technique [19], [20] is that it
only requires the knowledge of the upper bound of nonlinearities
whose exact information needs not to be known. By taking such
advantage, together with the novel parameter separation tech-
nique, we are able to remove the linear parameterization con-
dition, and in turn solve the open problem of global adaptive
stabilization for a class ofnonlinearly parameterizedsystems
with uncontrollable linearization. A systematic design proce-
dure is given for the explicit construction of smooth, one-di-
mensional (1-D) adaptive controllers which achieve asymptotic
state regulation with global stability. As a consequence, we ar-
rive at an important conclusion on global adaptive stabilization
of affine systems with nonlinear parameterization: every feed-
back linearizable or minimum-phase system with nonlinear pa-
rameterization is globally stabilizable by a smooth 1-D adap-
tive controller, without imposing any extra condition such as
convex/concave condition [2], [16], [17] on the unknown pa-
rameters.

It is worth emphasizing that the uncertain systems considered
in the paper are inherently nonlinear in the sense that: 1) the pa-
rameters appear nonlinearly and belong to anunknowncompact
set, i.e., no prior knowledge is required on the bound of the un-
known parameters; 2) the systems are high-order because the
Jacobian linearization is null or uncontrollable; and 3) the sys-
tems arenot necessarily in a lower triangular form. Therefore,
the class of systems is much more general than (also signifi-
cant different from) feedback linearizable systems with linear
parameterization [14], [24], [25] and must be dealt with by pure
nonlinear methods, i.e., no feedback linearization design works,
even locally.

II. PRELIMINARY

A standard adaptive global stabilization problem or, what is
the same, the problem of adaptive regulation with global sta-
bility is formulated as follows: for a smooth nonlinear system

(2.1)

with an unknown parameter vector, find, if possible, a smooth
adaptive controller

(2.2)

such that the closed-loop system (2.1) and (2.2) is globally
stable in the sense of Lyapunov, and global asymptotic regula-
tion of the state is achieved, i.e., .

Under the linear parameterization condition, global adaptive
regulation has been investigated in a number of papers ([14],
[24], [25], and [18]), where globally stabilizing smooth adap-
tive controllers of the form (2.2), with , were
designed for the feedback linearizable system

...

(2.3)

By comparison, only few results in the literature addressed
adaptive control of nonlinear systems withnonlinear pa-
rameterization, under conditions such as convex/concave
parameterizations [23], [2], [4].

A longstanding open problem in the field of nonlinear adap-
tive control is the question of when global state regulation of
nonlinearly parameterizedsystems can be solved by a smooth
adaptive controller. In this paper, we address this challenging
question and provide a partial solution to it. This is accom-
plished by characterizing sufficient conditions for the problem
to be solvable for a class of high-order nonlinearly parameter-
ized systems of the form

...

(2.4)

where and are the system input and state,
areoddpositive integers, is an unknown con-

stant vector, and
are functions with .

The controlled plant (2.4) represents a number of important
classes of nonlinear systems with parametric uncertainty.
The simplest case is the feedback linearizable system where

, , ,
. The other interesting case of (2.4) is the class

of high-order lower triangular systems with nonlinear parame-
terization. Finally, (2.4) encompasses a class ofnontriangular
systems with uncontrollable linearization (e.g., Example 5.3)
that cannot be dealt with by existing methods.

In the rest of this section, we introduce two key lemmas which
serve as a basis for the explicit construction of globally stabi-
lizing smooth adaptive controllers for nonlinear systems (2.4).
The first lemma provides a new parameter separation technique
which enables one to deal with nonlinear parameterization. A
successful combination of this lemma and the adding a power
integrator technique [20] will result in a solution to the global
adaptive regulation problem of nonlinearly parameterized sys-
tems (2.4).

Lemma 2.1:For any real-valued continuous function
, where , , there are smooth scalar

functions , , and , such
that

(2.5)

(2.6)
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Proof: For each , define

which are compact for every fixed .
When , the point lies in the set . As a

consequence

Similarly, it is easy to show that

when .
In view of the argument above, one concludes that for any

By construction, the functions and are continuous,
and, hence, can always be dominated by two smooth functions

and , respectively. Thus, (2.5) holds. Inequality (2.6)
follows immediately from (2.5). In fact

where , .
Example 2.2:Consider the smooth function .

By Lemma 2.1

which is smooth. Hence,
.

Example 2.3:For the continuous function ,
a straightforward calculation gives

,

Obviously

Thus, one can choose the functions and
, such that (2.5) and (2.6) hold.

The following Lemma is a consequence of Young’s inequality
and plays a key role in the adding a power integrator design.

Lemma 2.4 [20]: For any positive integers , and any real-
valued function ,

(2.7)

III. T RIANGULAR SYSTEMS WITH NONLINEAR

PARAMETERIZATION

With the aid of Lemmas 2.1 and 2.4, we can present a feed-
back domination design approach which leads to solutions to the
problem of adaptive regulation with global stability, for two im-
portant classes of nonlinearly parameterized systems in a lower
triangular form.

A. High-Order Nonlinear Systems With Uncontrollable
Linearization

For the sake of simplicity, we first consider the nonlin-
early parameterized system (2.4) with

, which represents an important class of
high-order lower triangular systems, i.e.,

...

(3.1)

It has been known that even under the linear parameterization
condition, global adaptive regulation of the high-order triangular
system (3.1) is a nontrivial problem, due to thelack of feedback
linearizability and affiness. As a matter of fact, counterexamples
given in [19] have indicated that without imposing suitable
growth conditions on and , the problem is usually
unsolvable by anysmooth adaptive controller. In the case
of nonlinearly parameterizedsystems (3.1), the following
assumptions which can be viewed as ahigh-order version of
feedback linearizable conditionare needed in order to solve
the adaptive control problem.

Assumption 3.1: are odd integers.
Assumption 3.2:For

(3.2)
where is a nonnegative continuous function.

Remark 3.3:By Lemma 2.1, there exist two smooth func-
tions and satisfying

Since is a constant, is a constant as well. Let
be a new unknown constant. Then, Assumption 3.2

implies that there are smooth functions and
an unknown constant , such that

(3.3)
Lemma 2.1, together with Remark 3.3, provides a new way to

deal with the nonlinear parameterization problem. In this paper,
in lieu of estimating the unknown parameter , we shall
estimate the unknown constantwhich is scalar and positive.
However, due to the fact that in (3.3) only appears linearly
in the bounding function , there is a technical difficulty in
processing an adaptive control design. Namely, in order to take
advantage of the linear-like parameterization condition (3.3),
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only the bounding function , instead of , can be used
in the design of adaptive controllers. To overcome this major
difficulty, we propose a feedback domination design approach.
In contrast to the existing adaptive control schemes for linearly
parameterized systems such as (2.3) [which are based on feed-
back cancellation and usually require the precise information of

], our new feedback domination design needs not to know
the precise information of but , and therefore leads to
a solution to global adaptive regulation of nonlinearly parame-
terized systems (3.1).

Theorem 3.4:Under Assumptions 3.1 and 3.2, there is a1-D
smooth adaptive controller

(3.4)

such that the closed-loop system (3.1)–(3.4) is globally stable in
the sense of Lyapunov. Moreover, global asymptotic regulation
of the state is achieved, i.e.,

Proof: The proof is based on a feedback domination
design approach which combines the technique ofadding
one power integrator[20] with the new parameter separation
method (i.e., Lemma 2.1 and Remark 3.3). Using the feedback
domination design, we explicitly construct a control Lyapunov
function and a minimum-order adaptive controller of the form
(3.4) that solves the problem.

Initial Step: Let be the unknown constant
defined in Remark 3.3. Define , where is
the estimate of to be designed later. Consider the Lyapunov
function . By A3.2and Remark
3.3, it is easy to show that

With the choice of the smooth virtual controller

we have

(3.5)

where and .
Inductive Step:Suppose for the system (3.1) with dimension

, there are a set of smooth virtual controllers ,
defined by

...
...

(3.6)

with being
smooth, such that

–

(3.7)

where

is positive definite and proper. Moreover

for (3.8)

Then, when the dimension of (3.1) is equal to , we claim
that (3.7) and (3.8) also hold. To see why this is the case, con-
sider the Lyapunov function

Clearly

(3.9)

By Assumption 3.2 and Remark 3.3

Since and , there is a smooth function
, such that

(3.10)
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This, together with (3.6), implies

(3.11)

where is a smooth function.
Using Lemma 2.4 and (3.10), (3.11), it is deduced that there

is a smooth function satisfying

(3.12)

Recall that for any odd integer

With this in mind, we have

(3.13)

for a smooth function . The last inequality follows from
Lemma 2.4.

Substituting (3.12) and (3.13) into (3.9) gives

(3.14)

Define

Using (3.8), it is not difficult to verify that

for a (3.15)

Moreover, (3.14) can be rewritten as follows:

(3.16)

By (3.15), we have

(3.17)
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The last inequality follows from the following relation (which
is a consequence of Lemma 2.4):

where , , are smooth functions
and is a
smooth function.

Putting (3.17) and (3.16) together, one arrives at

(3.18)

where
.

Now, it is easy to see that the smooth virtual controller

(3.19)

renders

(3.20)

The aforementioned inductive argument shows that (3.7)
holds for . In fact, at the th step, one can construct
explicitly a global change of coordinates , a posi-
tive–definite and proper Lyapunov function
and a smooth controller of the form (3.19),
such that

–

(3.21)

Therefore, the 1-D smooth adaptive controller

(3.22)

is such that

–
(3.23)

In view of the classical Lyapunov stability theory, we
conclude that the closed-loop system is globally stable
at the equilibrium . More-
over, by La Salle’s invariance principle all the bounded
trajectories of the closed-loop system approach the largest
invariant set contained in . Hence,

. This, together with the
relation (3.6) (with ), implies

It is clear from the proof of Theorem 3.4 that needs
not be aconstantvector. In fact, can be a time-varying
function as long as is bounded, althoughits bound may be
unknown. In other words, the adaptive control problem is still
solvable for thetime-varyingnonlinearly parameterized system
(3.1), with being a continuous function of,
bounded by anunknown constant.

Corollary 3.5: For the nonlinearly parameterized system
(3.1) with being a time-varying signal whose
bound is an unknown constant, there is a 1-D adaptive
controller of the form (3.4) such that the closed-loop system is
globally stable and , if Assumptions 3.1 and
3.2 hold.

From now on, we shall only deal with, without loss of gen-
erality, the unknown constant vector rather than the
unknown time-varying signal . However, all the adaptive
control results presented in the remainder of this paper can also
be applied, as illustrated by Corollary 3.5, to the corresponding
nonlinearly parameterized systems with an unknown bounded
time-varying signal, under appropriate conditions.

In the case of linearly parameterized systems, Theorem 3.4
has the following corollary which refines the adaptive control
result obtained in [20].

Corollary 3.6: Consider the high-order system (3.1) in
which . If Assumtpion
3.1 holds and

then global adaptive regulation of (3.1) is solvable by the 1-D
adaptive controller (3.4).

Corollary 3.6 indicates that global adaptive stabilization of
systems (3.1) with linear parameterization is achievable by a
smooth1-D (rather than -dimensional [20]) adaptive controller.
However, the feedback design methods in [20] and this paper are
substantially different. Indeed, the technique in [20] can only be
used to deal with triangular systems with linear parameteriza-
tion, and is by no means applicable to the nonlinearly parame-
terized case.

Remark 3.7: It is worth pointing out that the two con-
trol schemes also result in dramatically different adaptive
controllers. As a matter of fact, for the high-order, linearly
parameterized system (3.1) with an-dimensional unknown
parameter , the adaptive controller obtained in [20] is an-di-
mensional dynamic state compensator which has been viewed
as the simplest adaptive controller in the literature, because
the order of the adaptive compensator is equal to the number
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of unknown parameters. However, using our new feedback
domination design method, it is possible to construct a smooth,
1-D adaptive controller that achieves global state regulation,
no matter how big the number of unknown parameters is. In
other words, a significant feature of the new adaptive regulator
presented in Theorem 3.4 is itsminimum-orderproperty. That
is, the order of the dynamic compensator is equal to one and,
hence, is minimal.

B. High-Order Cascade Systems

In this subsection, we briefly discuss how the adaptive stabi-
lization result obtained for triangular systems can be extended
to the following class of cascade systems with nonlinear param-
eterization:

...

(3.24)

where represents the system state,
is the control input and is an unknown constant

vector. The functions and , , are assumed
to be smooth, vanishing at the origin .

The following assumptions are a modified version of As-
sumptions 3.1 and 3.2.

Assumption 3.8: are odd integers.
Assumption 3.9:There are continuous functions

and , such
that

(3.25)

(3.26)

Theorem 3.10:Suppose there are a smooth Lyapunov func-
tion , which is positive–definite and proper, and a smooth
function with , such that

(3.27)

where is an odd integer, is continuous and
for a function

. Then, under Assumptions 3.8 and 3.9, there
exists a smooth, 1-D adaptive controller (3.4) that solves the
global adaptive regulation problem of (3.24).

Proof: The proof is similar to that of Theorem 3.4. The
only difference is that at Step 1, we choose instead
of . For convenience, we give the first step of the proof.

Let and . Consider the Lyapunov
function

which is positive–definite and proper. Then

Using Lemma 2.1, Assumption 3.9, and the fact that , it
is not difficult to show that there are smooth functions
and satisfying

(3.28)

Similar to the argument in the proof of Theorem 3.4, one de-
duces from Lemma 2.4 that

(3.29)

for a smooth function . Likewise

(3.30)

where is a smooth function.
Substituting (3.29) and (3.30) into (3.28) yields

where and

Observe that the virtual controller

renders

which completes the proof of Step 1.
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The remaining part of the proof is analogous to that of The-
orem 3.4 and is, therefore, omitted.

In the next section, we shall prove that all the assumptions of
Theorem 3.10 are automatically satisfied for partially feedback
linearizable systems with a triangular structure, and hence they
are nothing but ahigh-order version of partial feedback lineariz-
able condition.

C. Feedback Linearizable Systems

So far, we have investigated adaptive control of high-order tri-
angular systems with nonlinear parameterization. We now dis-
cuss a special case of (3.1), whose adaptive regulation with
global stability is rather important and has occupied a central
role in the nonlinear adaptive control literature.

Consider a class of nonlinearly parameterized, feedback
linearizable systems of the form

...

(3.31)

In the literature of which we are aware, only few results
studied the adaptive control problem of (3.31); see, for in-
stance, [2], [23], and [4], in which adaptive control of a
subclass of systems (3.31) was investigated, under the re-
strictive convex/concaveparameterization condition. When

, (3.31) reduces to a
feedback linearizable system with linear parameterization for
which adaptive regulation was addressed in [14], [24], [25],
and [18].

In what follows, we illustrate thatwithout imposing any con-
dition, global adaptive stabilization of the nonlinearly param-
eterized system (3.31) is indeed possible. As a matter of fact,
using Theorem 3.4 it is straightforward to deduce the following
important conclusion which was recently proved in [22].

Corollary 3.11 [22]: For nonlinearly parameterized feed-
back linearizable systems (3.31), where for all

, the problem of adaptive regulation with global stability
is solvable by a 1-D adaptive controller of the form (3.4).

Proof: The result is a direct consequence of Theorem 3.4.
Obviously, Assumption 3.1 holds automatically for feedback
linearizable systems (3.31) because . Since

is and , using the identity
, with and ,

yields

for functions

This, in turn, implies the existence of a continuous function
, such that Assumtpion 3.2 is satisfied.

Therefore, Corollary 3.11 follows immediately from Theorem
3.4.

Remark 3.12:Due to the nature of the feedback domination
design, it is not difficult to conclude that Corollary 3.11 remains
true for the following uncertain system:

(3.32)
as long as there exist continuous functions
, , such that

(3.33)

The following seemingly simple yet nontrivial example illus-
trates the application of Remark 3.12 and Corollary 3.11.

Example 3.13:Consider the nonlinearly parameterized
system

(3.34)

where and are unknown parameters.
This system does not have a triangular structure but is of the

form (3.32). Observe that
satisfies the condition (3.33). Indeed, a direct calculation gives

with

(3.35)

By Remark 3.12, global adaptive regulation of the nonlinearly
parameterized system (3.34) is solvable by a smooth adaptive
controller. In what follows we illustrate how a smooth, 1-D
adaptive controller (3.4) can be explicitly constructed for (3.34).
We begin by considering ,

. A straightforward computation shows that

where

Next, choose , with
. Then

(3.36)

By (3.35)

(3.37)
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where

Substituting (3.37) into (3.36) yields

(3.38)

where

At the last step, consider
, . Clearly

(3.39)

Similar to the estimate (3.37), we have

(3.40)

where

This, together with (3.38) and (3.39), implies

where is the new control input satisfying

(3.41)

Note that

Hence

Clearly, the smooth adaptive controller

(3.42)

is such that . Hence, the 1-D
adaptive controller (3.41) and (3.42) makes the nonlinearly

parameterized system (3.34) globally stable, with asymptotic
state regulation.

We conclude this section by extending Corollary 3.11 to a
class of cascade systems

...

(3.43)

where , , , and , ,
are functions with and

.
Under mild conditions on the zero dynamics of (3.43), it is

possible to prove that global adaptive regulation is achievable
for the cascade system (3.43). Indeed, the following result can
be deduced from Theorem 3.10.

Theorem 3.14:Consider a nonlinearly parameterized cas-
cade system (3.43). If there exists a Lyapunov function

, which is positive–definite and proper, such that

(3.44)

Then, the problem of adaptive regulation with global stability is
solvable by a smooth, 1-D adaptive controller of the form (3.4).

Proof: The proof is carried out by simply verifying that
all the hypotheses of Theorem 3.10 are satisfied in the case
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of cascade systems (3.43). First of all,A3.8 is clearly true be-
cause . By hypothesis, the functions

, , can be decomposed as

for functions

which leads to (3.26) with , . Due to the
same reasoning, there exist continuous functions and

such that

which implies (3.25) with . In other words, system (3.43)
satisfiesA3.9as well. Finally, it is easy to see from (3.44) that
the condition (3.27) in Theorem 3.10 holds for the choice

Clearly, is continuous. Since , it
follows from the Taylor expansion formula that there is a
function , such that

According to the previous discussions, we conclude that all
the conditions of Theorem 3.10 hold when

. Hence, Theorem 3.14 follows from Theorem 3.10.
Remark 3.15:In the recent work [22], global adaptive sta-

bilization has been shown to be possible for a larger class of
cascade systems with nonlinear parameterization than system
(3.43). Note that Theorem 3.14 remains true if (3.44) is replaced
by the condition that is GAS and LES.

IV. NONLINEARLY PARAMETERIZED SYSTEMS BEYOND A

TRIANGULAR STRUCTURE

The main focus so far has been on the problem of adaptive
regulation with global stability for a class of triangular systems
with nonlinear parameterization. We now turn our attention to
investigating the possibility of extending the adaptive control
results obtained in the previous section to a larger class of non-
linearly parameterized systems such as (2.4), which gobeyond
a lower triangularform.

To design a globally stabilizing adaptive controller for sys-
tems (2.4), we need introducing a set of sufficient conditions
that characterize a subclass of nonlinearly parameterized sys-
tems (2.4).

Assumption 4.1:There exist functions
and , such that

(4.1)

Assumption 4.2:For , there exist
such that

(4.2)

(4.3)

where , , are con-
tinuous functions.

The main result of this section is the following theorem which
generalizes Theorem 3.4.

Theorem 4.3:Under Assumptions 3.1, 4.1, and 4.2, there is a
smooth,1-D adaptive controller of the form (3.4), which solves
the problem of adaptive regulation with global stability for non-
linearly parameterized systems (2.4).

Before proving Theorem 4.3, we first introduce a very useful
lemma.

Lemma 4.4:For the uncertain nonlinear functions and
satisfying Assumptions 4.1 and 4.2, respectively, there are

a constant and functions ,
, such that

(4.4)

(4.5)

Proof: When , for , using Lemma 2.4
yields

where is a smooth function to be determined later.
Thus

(4.6)

Combining (4.6) with (4.2), we have

(4.7)

Choose
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Then

for a (4.8)

Clearly, the previous inequality also holds when [i.e., by
choosing ].

Now, it is deduced from (4.8) and Lemma 2.1 that there are
smooth functions , , and

such that

Set . Then, (4.4) and (4.5) follow
immediately.

Proof of Theorem 4.3:The proof is based on a combina-
tion of adding a power integrator, Lemma 2.1 and Lemma 4.4,
in the spirit of Theorem 3.4.

Initial Step: Let , where be
the unknown constant defined in Lemma 4.4. Consider

. By Lemma 4.4, it is clear
that —subsystem of (2.4) satisfies

With the choice of the smooth virtual controller

we have

where . Since , it is
easy to deduce from Assumption 4.1 that

(4.9)

with .

Inductive Step:Suppose for system (2.4) with dimension,
there are a set of smooth virtual controllers , de-
fined by (3.6), such that

(4.10)

where

is a positive–definite and proper Lyapunov function. Moreover

for (4.11)

Then, (4.10) and (4.11) are also true when the dimension of
system (2.4) is equal to . To prove this claim, consider the
Lyapunov function

Clearly, taking the time derivative of along the solutions
of the -dimensional system (2.4) gives

(4.12)

Combining the estimation method in Theorem 3.4 with Lemma
4.4, one can prove that there is a smooth function ,
such that
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(4.13)

Similarly, the following estimates hold for a smooth function
:

(4.14)

Substituting (4.13) and (4.14) into (4.12) yields

(4.15)

Define

Then, (4.15) can be rewritten as follows:

(4.16)

Finally, it is not difficult to show that

(4.17)

Substituting (4.17) into (4.16), we arrive at
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(4.18)

where
is a smooth function.

Now, it is easy to see the smooth virtual controller

(4.19)
with
being smooth, renders

(4.20)

This completes the proof of the inductive step, from which a
smooth, 1-D adaptive controller can be easily constructed for
the nonlinearly parameterized system (2.4).

From a combination of Theorem 4.3 and Lemma 4.4, it is not
difficult to deduce the following result.

Corollary 4.5: Under Assumptions 3.1 and 4.1, and (4.5), the
problem of global adaptive regulation for nonlinearly parame-
terized systems (2.4) is solvable by the smooth adaptive con-
troller (3.4).

When , , (2.4) reduces to the
nonlinearly parameterized system with controllable lineariza-
tion

...

(4.21)

It is worthwhile pointing out that the problem of adaptive reg-
ulation with global stability remains unsolved even in the case
where the unknown parameterappears linearly in (4.21). For
the linearly parameterized system (4.21), onlylocal adaptive
regulation results were obtained [14], [25]. However, using the
new design technique proposed in Theorem 4.3 or Corollary 4.5,
one is able to derive a sufficient condition under which a glob-
ally stabilizing adaptive controller can be explicitly constructed.

Corollary 4.6: The global adaptive regulation problem of
(4.21) is solvable by a smooth, 1-D adaptive controller (3.4) if

(4.22)

where , for , and .
Proof: It follows immediately from Theorem 4.3 or Corol-

lary 4.5.
A nice application of Corollary 4.6 can be demonstrated by

solving the adaptive regulation problem for a nonlinearly pa-
rameterized system with a nontriangular structure.

Example 4.7:Consider the planar system with nonlinear pa-
rameterization

(4.23)

The aforementioned system is of the form (4.21). Using Young’s
inequality, it is easy to prove that

(4.24)

On the other hand, by the mean value theorem we have

(4.25)

Therefore, the condition (4.22) is fulfilled. By Corollary 4.6,
global adaptive regulation of system (4.23) is solvable by the
1-D smooth adaptive controller (3.4). A globally stabilizing
smooth adaptive controller can be explicitly constructed, as
briefly illustrated as follows.

Using (4.24) and (4.25), we define . Let
be the estimate of and consider the Lyapunov function

where and
.

Following the design procedure of Theorem 4.3, it can be
shown that the smooth adaptive controller

(4.26)

makes (4.23) satisfy

(4.27)
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Fig. 1. Transient response of the closed-loop system (4.23)–(4.26), with
x (0) = x (0) = 1, �̂(0) = 0. True values of parameters—� = 1 and
� =

p
2.

where

and

The simulation result shown in Fig. 1 indicates that the
1-D adaptive controller (4.26) achieves global stability of the
closed-loop system as well as asymptotic state regulation, with
a satisfactory dynamic performance and a fast convergent speed
of .

V. APPLICATIONS AND DISCUSSIONS

In this section, we use both physical and academic examples
to demonstrate, in the presence of nonlinear parameterizations,
some interesting applications of the new adaptive control strate-
gies developed so far.

The first example is the mass-spring mechanical system
shown in Fig. 2, where a mass is attached to a wall through a
spring and sliding on a horizontal smooth surface, i.e., resistive
force caused by friction is assumed to be zero. The mass is
driven by an external forcewhich serves as a control variable.
Let be the displacement from a reference position.

By Newton’s law, the equation of motion for the system is
given by

(5.1)

Fig. 2. Mass-spring mechanical system.

where is the restoring force of the spring. Assume that
, i.e., is only a function of the displacement and

. Suppose that we have little knowledge about the
spring which may be a linear one or a very complex nonlinear
spring with unknown parameters. As discussed in [15], the
restoring force of the spring can be modeled as

(5.2)

where and are unknown parameters. Note that (5.2) rep-
resents a family of springs. For example, it becomes a linear
spring when and . In the case when ,
and , (5.2) represents a soft spring if and a hard
spring if .

Example 5.1:Consider adaptive control of the mass-spring
mechanical system with nonlinear parameterization. We shall
show that the problem of adaptive regulation with global sta-
bility is solvable, irrespective of the values ofand ,

.
To begin with, we define and which transform

(5.1) into the state-space form

(5.3)

where can be an unknown mass.
Observe that no matter how big ofis, there exists an un-

known constants and , such that

(5.4)

Without loss of generality, in what follows we assume that
.

Obviously, the nonlinearly parameterized system (5.3) satis-
fies automatically all the conditions of Theorem 4.3 with
and . To explicitly design a globally stabilizing
smooth adaptive controller, consider for system
(5.3). A direct calculation gives , where
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. We then construct .
Clearly,

(5.5)

By (5.4), we have

(5.6)

where is an unknown constant.
Let be the estimate of . Define a positive–definite and

proper Lyapunov function

with

Using (5.5) and (5.6), it is not difficult to show that

(5.7)

By the completion of square

(5.8)

where

Substituting (5.8) into (5.7) yields

(5.9)

Thus, the smooth adaptive controller

(5.10)

is such that .
The effectiveness of the adaptive controller (5.10) is

demonstrated via computer simulation, with the parameters
, , and in (5.3).

The simulation in Fig. 3 indicates that the smooth, 1-D adaptive
controller (5.10) does the job, i.e., globally stabilizing the
uncertain nonlinear system (5.3) and achieving state regulation,
with a good dynamic performance.

The next example is on global adaptive control of a
single-link robot with one revolute elastic joint considered, for
instance, in [10] and [23].

Example 5.2:A single-link robot with one revolute elastic
joint can be, under appropriate conditions, modeled by the non-
linearly parameterized system [23]

(5.11)

where , and are unknown positive constants.
Global adaptive regulation of system (5.11) was achieved in

[23], under the assumptions that all the unknown positive pa-
rameters belong to aknowncompact set. However, this cru-
cial condition can be significantly relaxed according to our new
adaptive control schemes. As a matter of fact, by Theorem 4.3,
the only requirement for achieving global adaptive regulation
of (5.11) is that and are bounded below by known
positive constants, but their upper bounds need not be known.

The final example is devoted to adaptive control of a nontri-
angular system withuncontrollablelinearization.

Example 5.3:Consider the high-order planar system with
nonlinear parameterization

(5.12)

where the unknown constant .
Clearly, (5.12) is of the form (2.4) butnot in a triangular form.

Observe that by Lemma 2.4,

(5.13)
where . Hence, all the assumptions of Theorem
4.3 or Corollary 4.5 are satisfied. By Theorem 4.3 or Corol-
lary 4.5, there exists a smooth adaptive controller that solves
the adaptive stabilization problem for system (5.12).

To design the adaptive controller, consider
. Then

Obviously, the smooth virtual controller

is such that

Next, define and
. A direct calculation gives

(5.14)
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Fig. 3. Adaptive regulation of a mass-spring mechanical system:
state trajectories of (5.3)–(5.10) and parameter estimation�̂ with
x (0) = x (0) = �̂(0) = 1.

By (5.13), it is easy to show that

(5.15)

where

are nonnegative smooth functions because

is smooth.
Similarly, a direct calculation gives

(5.16)

with

Substituting (5.15) and (5.16) into (5.14), we have

(5.17)

Fig. 4. Transient response of the closed-loop system (5.12)–(5.19) with
x (0) = x (0) = �̂(0) = 1; � = 3.

where

Finally, it follows from Young’s inequality that

(5.18)

with

Putting (5.17) and (5.18) together, it is easy to see that the
smooth adaptive controller

(5.19)

yields , which in turn implies adaptive regulation
with global stability.

The simulation result in Fig. 4 shows dynamic perfor-
mance and parameter estimation of the closed-loop system
(5.12)–(5.19). It demonstrates that even in the case of nonlin-
early parameterized systems with uncontrollable linearization,
global adaptive regulation can be achieved via the new control
scheme.

VI. CONCLUSION

In this paper, we have provided a solution to the problem of
adaptive regulation with global stability, for a class ofnonlin-
early parameterizedsystems withuncontrollable linearization.
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The systems under consideration are difficult to deal with be-
cause they are usually neither feedback linearizable nor affine
in the control input. More significantly, they maynot be in a
lower triangular form and involve nonlinear parameterization.
The latter has been known as a challenging problem in the field
of nonlinear adaptive control.

By using the tool ofadding a power integrator[19], [20]
and coupling it effectively with the new parameter separation
technique proposed in Section II, we have shown how a
smooth, one-dimensionaladaptive controller can be explicitly
constructed, in a systematic fashion, making the inherently
nonlinear systems with nonlinear parameterization global stable
with asymptotic state regulation. As a consequence, a solution
was obtained to the problem of global adaptive stabilization of
feedback linearizable systems with nonlinear parameterization,
without imposing any additional condition such as convex or
concave parameterization.

Due to the nature of our feedback domination design, it is
straightforward to prove that all the adaptive control results
obtained in this paper can be directly extended, as shown
in Corollary 3.5, to nonlinearly parameterized systems (2.4)
with unknown bounded time-varying signals, under appropriate
conditions such as Assumptions 3.1 and 3.2, or 4.1 and 4.2.
In other words, global adaptive regulation is achievable for
time-varying nonlinearly parameterized systems such as (2.4)
and (3.1), with and being a continuous
function of , bounded by anunknown constant.
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