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Adaptive Control of Nonlinearly Parameterized
Systems: The Smooth Feedback Case

Wei Lin, Senior Member, IEEEBNnd Chunjiang QianMember, IEEE

Abstract—This paper studies global adaptive control ofnon- is not only interesting theoretically (as it represents a challenge
linearly parameterizedsystems with uncontrollable linearization for adaptive control), but also important from a viewpoint of
Using a new parameter separation technique and the tool of .4 tica| applications. In the past few years, several researchers

adding a power integrator, we develop a feedback domination . S e . .
design approach for the explicit construction of a smooth adaptive started working on this difficult problem and obtained some in-

controller that solves the problem of global state regulation. In terestingresults [23], [2], [16], [17], [4]. It must be noticed, how-
contrast to the existing results in the literature, a key feature of ever, that most of the results were derived under various condi-
our adaptive regulator is its minimum-order property, namely, no  tions imposed on the unknown parameters. One of common as-
matter how big the number of unknown parameters is, the order sumptions is thabound of the nonlinear parameters is known

of the dynamic compensator is identical to one, and is therefore Und h diti th bl f global adanti trol
minimal. As a consequence, global state regulation of feedback lin- Ndersuch a condition, the probiem orgiobal adaptive Contro

earizable systems with nonlinear parameterization is achieved by Py output feedback was solved for nonlinearly parameterized
one-dimensional adaptive controllers, without imposing any extra systems [23]. The other condition is the so-cakbetvex/con-
(e.g., convex/concave) conditions on the unknown parameters.  caveparameterization which has been assumed in [2], [16], and

Index Terms—Adding a power integrator, global adaptive sta- [17], where a min—max strategy was proposed for the design of
bilization, nonlinear parameterization, nonlinear systems with un- adaptive tracking controllers. However, without imposing any

controllable linearization, smooth feedback. condition on the parameters, global adaptive regulatiomot
linearly parameterizedystems has been recognized as a chal-
I. INTRODUCTION lenging open problem, particularly in the case of nonlinear sys-

) ) _tems withuncontrollable linearization
A DAPTIVE control of nonlinear systems with parametric 1 address this difficult issue, new nonlinear adaptive control

uncertainty has been one of the active subjectsinthefie‘gg}ategieS must be developed. This is because most of the
of nonlinear control. Two recent books, [14] and [24], prOVidﬁdaptive control schemes [14], [24], [25], and [18], on one
a comprehensive report on the major developments in the afRfd, rely heavily ofinear parameterizationand on the other
of adaptive control of feedback linearizable systems Virtbar hand, they are only applicable fieedback linearizablsystems
parameterizationBy comparison, little progress has been madg g triangular form [14], [24], [25], [18], [17]. The feedback
for adaptive control ohonlinearly parameterizedystems in- |inearizable condition was relaxed in [20], where a solution
volving inherent nonlinearity, in the sense that the system mgy the problem of global adaptive regulation was given for
be neither feedback linearizable nor affine in the control inplﬂnearly parameterized, high-order systems. The progress was
and itslinearization is uncontrollableAs a matter of fact, even y5qe possible due to the development of a novel feedback
in the case of feedback linearizable systems with nonlinear Rfssign technique calleddding a power integratgrwhich
rameterization, very few results are available in the literatujgas motivated by homogeneous feedback stabilization [3],
and global adaptive regulation has remained largely open tgﬁ' [9], [12], [13], [6], [7] and proposed initially in [19] for
more than a decade. _ global stabilization of nonlinear systems with uncontrollable
As demonstrated in [1], [23], [2], and [4], nonlinear paraminearization. It turns out that this technique is also useful in
eterization can be found in various practical control problem§o|\,ing adaptive regulation of high-order systems [20]. The
For instance, it arises naturally in physical systems such as bigsential idea behind adding a power integrator is that the
chemical processes [4] and machines with friction [1]. Dealingedback domination design, instead of feedback cancellation,
with this type ofnonlinearly parameterizedynamic systems s employed to deal with the nonlinearities of the system. While
the backstepping design [14], [24] is only applicable to feedback
linearizable systems, the adding a power integrator technique
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this is not a trivial task and there is no systematic method avail-Under the linear parameterization condition, global adaptive
able currently. Another possible method is to impose certaiegulation has been investigated in a number of papers ([14],
conditions on the system parameters such as convex/condavg, [25], and [18]), where globally stabilizing smooth adap-
parameterization, as done in [2] and [17]. tive controllers of the form (2.2), witdim # = dim 8, were
In this paper, we present a new approach to deal with genedlakigned for the feedback linearizable system
nonlinear parameterizations. First, we show that for every con- .
fi : : : . - 2= folz, x1) + ¢o(z, 21)0
inuous function with nonlinear parameters, itis always possible .
to “separate” the nonlinear parameters from the nonlinear func- 1 =+ 1z, 21)8
tion. Then, in order to effectively use this parameter separation :
technique for the design of adaptive control systems, we modify .
the tool of adding a power integrator accordingly. A key feature & Zut ¢p(z, 2, oo 2)0. (2.3)
of the adding a power integrator technique [19], [20] is that By comparison, only few results in the literature addressed
only requires the knowledge of the upper bound of nonlinearitieglaptive control of nonlinear systems witionlinear pa-
whose exact information needs not to be known. By taking sugdmeterization under conditions such as convex/concave
advantage, together with the novel parameter separation teghrameterizations [23], [2], [4].
nique, we are able to remove the linear parameterization conA longstanding open problem in the field of nonlinear adap-
dition, and in turn solve the open problem of global adaptiv@/e control is the question of when global state regulation of
stabilization for a class afionlinearly parameterizedystems nonlinearly parameterizedystems can be solved by a smooth
with uncontrollable linearizationA systematic design proce-adaptive controller. In this paper, we address this challenging
dure is given for the explicit construction of smooth, one-dguestion and provide a partial solution to it. This is accom-
mensional (1-D) adaptive controllers which achieve asymptofitished by characterizing sufficient conditions for the problem
state regulation with global stability. As a consequence, we ag-be solvable for a class of high-order nonlinearly parameter-
rive at an important conclusion on global adaptive stabilizatiamed systems of the form
Ef afﬂr_1e sygtems W|th.n.onllnear parametenza‘qon. every feed- &1 =di(z, u, )b + d1(z1, 22, 6)
ack linearizable or minimum-phase system with nonlinear pa-
rameterization is globally stabilizable by a smooth 1-D adap- iy =dy(x, u, 0)ap® + po(z1, 2, 3, 0)
tive controller, without imposing any extra condition such as
convex/concave condition [2], [16], [17] on the unknown pa- '
rameters. Tp =dp(z, u, )P + Py, ..., zp, u, 8)  (2.4)
Itis worth emphasizing that the uncertain systems considefgflerey, € IR andz € IR™ are the system input and state, i =
in the paper are inherently nonlinear in the sense that: 1) the pa- .. | » areoddpositive integersq € IR* is an unknown con-
rameters appear nonlinearly and belong teiaknowrcompact  stant vectord;: R" x R x R® — R and¢;: R“T! x R* — R
set, i.e., no prior knowledge is required on the bound of the ugre ¢! functions withe;(0, ..., 0, 8) = 0.
known parameters; 2) the systems are high-order because thehe controlled plant (2.4) represents a number of important
Jacobian linearization is null or uncontrollable; and 3) the sygtasses of nonlinear systems with parametric uncertainty.
tems arenot necessarily in a lower triangular fornTherefore, The simplest case is the feedback linearizable system where
the class of systems is much more general than (also signjfj-= 1, bi(xy, -, g1, 0) = di(e, ..., x4, 0), di(-) = 1,
cant different from) feedback linearizable systems with linegr= 1, ... ». The other interesting case of (2.4) is the class
parameterization [14], [24], [25] and must be dealt with by purgf high-order lower triangular systems with nonlinear parame-
nonlinear methods, i.e., no feedback linearization design WOI‘I{égization_ Fina”y, (2_4) encompasses a C|asﬂ@]‘itriangu|ar
even locally. systems with uncontrollable linearization (e.g., Example 5.3)
that cannot be dealt with by existing methods.
II. PRELIMINARY Inthe rest of this section, we introduce two key lemmas which
gerve as a basis for the explicit construction of globally stabi-

A standard adaptive global stabilization problem or, what 15 i ,
the same, the problem of adaptive regulation with global stlizing smooth adaptive controllers for nonlinear systems (2.4).

bility is formulated as follows: for a smooth nonlinear system ' N€ firstlemma provides a new parameter separation technique
which enables one to deal with nonlinear parameterization. A

(= f(¢, u, 6) (2.1) successful combination of this lemma and the adding a power
integrator technique [20] will result in a solution to the global
with an unknown parameter vecigyrfind, if possible, a smooth adaptive regulation problem of nonlinearly parameterized sys-

adaptive controller tems (2.4).
. . Lemma 2.1:For any real-valued continuous function
6 =v((,0) ¥(0,0)=0 f(z, y), wherez ¢ R™, y € R", there are smooth scalar
w=u((, 8) w0,0)=0 (2.2) functionsa(z) > 0, b(y) > 0, ¢(z) > 1 andd(y) > 1, such
that
such that the closed-loop system (2.1) and (2.2) is globally /(. )| <a(x) + b(y) (2.5)

stable in the sense of Lyapunov, and global asymptotic regula-
tion of the state is achieved, i.&in; ..., ¢(¢t) = 0. |f(z, v)| <c(x)d(y). (2.6)
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Proof: For eachz, i) € R™ x IR", define [ll. TRIANGULAR SYSTEMS WITH NONLINEAR

PARAMETERIZATION
Qa} = 3 S Rn7 S . .
e, s)ls lsll < fll} With the aid of Lemmas 2.1 and 2.4, we can present a feed-

Qy =1 wlt € B, it < [lvll} back domination design approach which leads to solutions to the
problem of adaptive regulation with global stability, for two im-
portant classes of nonlinearly parameterized systems in a lower
triangular form.

which are compact for every fixed:, ¥).
When|ly|| < ||l=||, the point(z, ¥) lies in the set2,. As a

consequence
\f(z, v)| < Alz) A(z) == max |f(t, ). A. High-Order Nonlinear Systems With Uncontrollable
’ B ’ (t,5)€0 ’ Linearization
Similarly, it is easy to show that For the sake of simplicity, we first consider the nonlin-
early parameterized system (2.4) with(z1, ..., x;y1, 0)
|f(z, v)| < B(y), B(y) :== max |f(t, 9)] = ¢;(x1, ..., z;, 8), which represents an important class of
(t,s)eQ

high-order lower triangular systems, i.e.,
whenl|z]| < {|y]|- P m P

In view of the argument above, one concludes that for any &1 =ah' + d1(x1, 0)
(z,y) € R™ x R" :

|f(z, )| < Alz) + B(y). Bpo1 =20 1@, s s 0)

. . . Tp :U'pn"i_(f)n(xlv sy Ly 9) (31)
By construction, the functiond(x) and B(y) are continuous,

and, hence, can always be dominated by two smooth functions has been known that even under the linear parameterization
a(x) andb(y), respectively. Thus, (2.5) holds. Inequality (2.6}ondition, global adaptive regulation of the high-order triangular

follows immediately from (2.5). In fact system (3.1) is a nontrivial problem, due to thek of feedback
linearizability and affinessAs a matter of fact, counterexamples
|[f(@. 9)] < alz) + b(y) < cw) d(y) given in [19] have indicated that without imposing suitable

wherec(z) := 1 +a(e) > 1, d(y) := 1 + b(y) > 1. 1 growth conditions onp; and ¢;(-), the problem is usually

unsolvable by anysmooth adaptive controller. In the case

Example 2.2: Consider the smooth functiof(z, y) = e*¥. 3 k !
of nonlinearly parameterizedgsystems (3.1), the following

By Lemma 2.1 . . . . .
assumptions which can be viewed asigh-order version of
A(z) := max ¢ = max ¢*° = & feedback linearizable conditioare needed in order to solve
(t,5) €02 sI<l=| the adaptive control problem.
L 22 2 22 Assumption 3.1:p; > ps > --- > p, > 1 are odd integers.
V\g;')Ch is smooth. Hencef(x, y) < ¢ +¢ < (1+¢" )1+ Aqqumption 3.2Fori = 1, ..., n
c .
Example 2.3: For the continuous functiofi(z, ) = |z[%¥], (Bi(1y s i O)] < (2o P A+ e+ |2 [P i, -, s, 6)
a straightforward calculation gives (3.2)
1 lz] < 1 whereb;(-) is a nonnegative continuous function.
A(x) = max |z|l*l = { el N Remark 3.3:By Lemma 2.1, there exist two smooth func-
le<le] ] el 2 1, tionsc;(#) > 1 andv;(z1, ..., z;) > 1 satisfying
B(y) := max ¢l = ylyl.
( ) [t1<]yl | | | | bi(azl, ceey T4, 9) < ’yi(xl, e .IZ)CZ(Q)
Obviously Since#d is a constantg; () is a constant as well. Le® :=
Alz) < — (1 4 p2)1+a?)/4 .Z;;.l ¢i(f) be a new unknown constant. Then, Assumption 3.2
() < ale) =(1+27) implies that there are smooth function$z1, ..., z;) > 1and
B(y) < bly) = (1 4 y2)AHv/4, an unknown constaréd > 1, such that
Thus, one can choose th&> functionsc(z) = a(z) and |¢;(z1, ..., z;, O] < (x| + - + |z P )vi(21, - - -, 7;)O.
d(y) = b(y), such that (2.5) and (2.6) hold. (3.3)

The following Lemma is a consequence of Young's inequality Lemma 2.1, together with Remark 3.3, provides a new way to
and plays a key role in the adding a power integrator design.deal with the nonlinear parameterization problem. In this paper,

Lemma 2.4 [20]: For any positive integers, » and any real- in lieu of estimating the unknown parametee IR*, we shall
valued functionr(z, y) > 0, estimate the unknown constaBtwhich is scalar and positive.
However, due to the fact that in (3.8) only appears linearly

m
™yl < — g w(x, y)z|" " in the bounding functiony;(-), there is a technical difficulty in
n —(m/n) - processing an adaptive control design. Namely, in order to take
+m T @ (, y)lyl : (2.7) advantage of the linear-like parameterization condition (3.3),
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only the bounding function;(-), instead ofg,(-), can be used with 3;(xy, @) > 0,..., 0 (21, ..., zg, @) > 0 being
in the design of adaptive controllers. To overcome this majemooth such that
difficulty, we propose a feedback domination design approach. .
In contrast to the existing adaptive control schemes for Iinearl{//k(&’ oo Eks @)‘
parameterized systems such as (2.3) [which are based on feed-

back cancellation and usually require the precise information of < —(n — k + 1)(6”1Jrl + 4+ €£1+1)

(3.1)—3.6)

#:(-)], our new feedback domination design needs not to know n pl_mﬂ(x _ )
the precise information af;(-) but~;(-), and therefore leads to ktl o Rl
a solution to global adaptive regulation of nonlinearly parame- N ) A
terized systems (3.1). * ( f(En o 6 ©) - ) ( Tl e G ))
Theorem 3.4:Under Assumptions 3.1 and 3.2, there isB (3.7)
smooth adaptive controller
where
ézz/)a:,...,a:n,@, e N koo ghpit? 62
(1 °) Vil€r, o 6,0) =Y Ly =
u=u(T1, ..., Tn, O) (3.4) Sp-pit2 2

such that the closed-loop system (3.1)—(3.4) is globally stableinpositive definite and proper. Moreover
the sense of Lyapunov. Moreover, global asymptotic regulation

of the state is achieved, i.e., 0<W(lrs -5 & ©) )
R S (£f1+1 +- 1+ p1+1)ak(£17 Tt £k7 6)
Jg @) =0 V((0), ©(0) € R” x R. for () 2 0. (3.8)

Proof: The proof is based on a feedback domination Then, when the dimension of (3.1) is equakte 1, we claim
design approach which combines the techniqueadfling that (3.7) and (3.8) also hold. To see why this is the case, con-
one power integratof20] with the new parameter separatiorfider the Lyapunov function

method (i.e., Lemma 2.1 and Remark 3.3). Using the feedback £pl_pk+1+2
domi_nation desig_n,_ we explicitly cons_truct a control Lyapunoy;  (¢1, ..., &y1, (;)'): Vi(&r,s ooy & @) Skt
function and a minimum-order adaptive controller of the form P1—Pry1+2
(3.4) that solves the problem. Clearly

Initial Step: Let® := >\, c;(#) be the unknown constant
defined in Remark 3.3. Defin@(t) = © — O(¢), where®(#)is ~ Vig1r < —(n —k + 1)(ET + . 4 et
the estimate 0B to be designed later. Consider the Lyapunov 4 gp P gt
functionV; (1, ©) = (1/2)23+(1/2)0?. By A3.2and Remark kbl T kel
3.3, it is easy to show that + (\yk(.) - @) (@ + nk(-)) + e et

y 5) < p1 p1+1 S 1A A E drs., 0xi 1 A

Vi(ey, ©) < apah’ + 28 1y, (21)(6 + 6) — O(1)6(b). e+ () Z Sher g, - D @] .

J
With the choice of the smooth virtual controller (3.9)
1/p1 .

s = —x1 <n + 71 (z1)y/ O + 1) = —z151(z1, O) By Assumption 3.2 and Remark 3.3

we have ¢ i TR
Prr1() =Y op. L
. ~ i=1 J
‘/l(xlv @) < _n$2£1+1 +$1( - x;pl) k41 k oz
+ (%( )= 6(1) (6(t) +m) (35) 3 o, )£ 30|
=1 =1

whereV¥,(z;) = a:p1+1’yl(xl) > 0andn; = 0. o J N

Inductive Step:Suppose for the system (3.1) with dimension P+ D farPory(an, o 2)0 )
k, there are a set of smooth virtual controlless ..., = |, =
defined by Since® > 1andp; Zp2 2 pr+1, thereis a smooth function

pk+1(]}1, cees Thal, @) > 0, such that
x] =0 . §1=x1 — a7
x5 = —&/1(x1, O©) §o = wy — 25 k ale ’“+1

Greg1(*) Z
iy = =&z, -, T, O) &1 = xpp1 — Tho X
(3.6) Jz|"* pryi (@, -y Tagr, ©)0. (3.10)
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i i impli _ x5, AN /=
This, together with (3.6), implies _ S]’;‘—li_lf‘k+1+l 3%;1—1 6+ (\Ifk(-)—@) (@ + Uk(')) '
k k 00
Ot +1 (3.14)
Propa () — EEL ) <
z:: ox; " ; Define
JaP g (&, - Ggr, ©)0 (3.11) Ui (ér, ooy Gty ©)
~ k
wherewsy1(&1, - .., &y, ©) > 0is a smooth function. > SfIH
Using Lemma 2.4 and (3.10), (3.11), it is deduced that there =U(ér, ..., & @) + =1
is a smooth functiom; (-) > 0 satisfying 2(1+0%)(1+m3(-)
. + P O ()
1—Prt1+1 z -
S ‘ Pry1() Z ML s M1 (€1s -y Exy1, ©)
s=1 or;,
:77k(£17 () £k7 ) +£f:—1pk+l+l #
E £P1+1 00
Using (3.8), it is not difficult to verify that
2(1+@2)(1+77’%(-)) -
* 0 <Wrs1(é1, -+, &t1, ©)
<@+ & (G, G, ©)
A foraC>™oyy1(-) > 0. 3.15
+E MG (&, - G, ©)] © aHl( )2 (3.15)
Moreover, (3.14) can be rewritten as follows:
' _ I l P1+1 . pr+l
— - P1—Pr+1+1l_ Prt1 1+1
=1 2 + & T()] © +on oy T8N
21+ 02) 1 +n(-) -
B ver 414 500]
k
1+1 ~
Pk n : + (W1 = 0) (O +maa ()
e iU T ()Y er+ 1 (3.12) N
E P1+1
. S & )
Recall that for any odd integer > 1 _ i = T + 55;; T ()| )
[(a+8)" = 1| <plal((a+ b~ + 47 *
<pla|[2P (et 0P ) 4071 )
P1—Pr+1+1 -Tk+l \I/k—l—l() (316)

k+1 a@
By (3.15), we have

With this in mind, we have

A (G L
E £P1+1
< Pr [27” e[St p"“‘-ﬁ- (14227 2) B0 () €7 £k+1|} prtl
L eptt +1 +1 2(1 +@2)( F20) + &40 Gt () | ()
L@ 4 Y e (G G, ©) i
(3.13)
for a smooth functioi(-) > 0. The last inequality follows from pr—pepitl O
Lemma 2.4. RESAT! 26 k+1(0)
Substituting (3.12) and (3.13) into (3.9) gives
Vipr <—(n—k+3) (T 4. g et K
o ( P1—Pk 1+1) (Pk 1 p1+1 * ) < i ZSPH—I + Si)-lsilwk-l-l( ) 771%() +1
+&5 T Ay 4 =1
/- B —prs1t1 OTR L L
. |:wk+1(.) @2 +1+ ’7k+1('):| ££+lm+ +1 ﬁ (5{) +1 4o ££+tl)ak+l(')
k
3o et <EE@T g T () +1
=1 +1 & 4
+ = + &5 w1 () | © ML R
2(14+02)(1 +77() +eptt By, (&1 -5 &k, O). (3.17)

j=1
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The last inequality follows from the following relation (which

is a consequence of Lemma 2.4):
Ty 41

s am(-)‘

+ & B (G

£P1+1*Pk+1
k+1

p1+1
&

A~

51?1-1—1
< ) £k+17 @)7

4

wher~e/§k+1jj(-) > 0,1 < 5 £k, are smpoth functions
andfrys, i1 (0) > [ [Pr Pt Oy, /0O|an4a () is @
smooth function.
Putting (3.17) and (3.16) together, one arrives at
P1—Pr+1+1_ Prt1

Vi1 () < —(n — k)(gfl—i—l"‘ e +5£1+1)+ k1 2

et [wm(-)\/ 67 + 14+ A1)+ fykﬂcﬂ

A

1<j<k

(3.18)

where y11(-)

+ (Tr () = 0) (6 +mnn()
) W1 (VM) +1 +E§Ii Br+1,s
(&1, s kg1, ©).

Now, it is easy to see that the smooth virtual controller

. ~ 11/Prt1
Thyo = —&kt1 [ﬂ —k+prq1(€as ooy S, @)}
P (") =Trp1 (VY O2 + 1+ g1 () + Angr () > 0
(3.19)
renders
Vigi(ée, .-+, &ry1, ©)
< —(n—k)(EH 4+
1—pr+1+1 k41 *Prt1
+£Z+1p B i++2 - xkﬁ_; )
+ (\Pk+1(517 ooy g, ©) = é)
O+ mail€s o 641, ©)). (320)
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In view of the classical Lyapunov stability theory, we
conclude that the closed-loop system is globally stable
at the equilibrium(¢;, ..., &, ©) = (0,...,0). More-
over, by La Salle’s invariance principle all the bounded
trajectories of the closed-loop system approach the largest
invariant set contained ifi(¢1, ..., &, ©): v, = 0}. Hence,
limy—oo (£1(2), ..., &)Y = 0. This, together with the
relation (3.6) (withk = rn), implies

c e (NT =0 V(2(0), 6(0) € R" xR,
|

It is clear from the proof of Theorem 3.4 thatc IR° needs
not be aconstantvector. In fact,# can be aC® time-varying
function as long a8(¢) is bounded, althougits bound may be
unknown In other words, the adaptive control problem is still
solvable for theime-varyingnonlinearly parameterized system
(3.1), with : IR — IR’ being a continuous function df,
bounded by amnknown constart.

Corollary 3.5: For the nonlinearly parameterized system
(38.1) with § = 6(t) being aC? time-varying signal whose
bound is an unknown constant, there is a ¥ adaptive
controller of the form (3.4) such that the closed-loop system is
globally stable andim;_.., z(t) = 0, if Assumptions 3.1 and
3.2 hold. |

From now on, we shall only deal with, without loss of gen-
erality, the unknown constant vectér e IR’ rather than the
unknown time-varying signa#(¢). However, all the adaptive
control results presented in the remainder of this paper can also
be applied, as illustrated by Corollary 3.5, to the corresponding
nonlinearly parameterized systems with an unknown bounded
time-varying signal, under appropriate conditions.

In the case of linearly parameterized systems, Theorem 3.4
has the following corollary which refines the adaptive control
result obtained in [20].

Corollary 3.6: Consider the high-order system (3.1) in

tlim (z1(t), - ..

The aforementioned inductive argument shows that (3.7)

holds fork = n. In fact, at thenth step, one can construct

explicitly a global change of coordinatés, ..., &,), a posi-
tive—definite and proper Lyapunov functiéf (¢, ..., &, ©)

and a smooth controller(¢y, ..., &,, é) of the form (3.19),
such that

Valbas oo 6ns ©)]
(&1 €ny ©) (3.1~(3.6)
S —(ET )

n (xpn(gl, £, ©) - é) (é+n,,,(§1,

*Pn)

60, ©)).

— U

(3.21)
Therefore, the 1-D smooth adaptive controller
é :\Ijn(glv (AR £n7 é)
w=u"(&1, ..., &, O) (3.22)
is such that
Vb, ooy &, © < (e gLy,
(517 ; 5 ) ) (3.1)—(3.22) = (51 + +£n )

(3.23)

which (7)7‘,(.’13'1, sy Ty, 9) = (7)7‘,(.’13'1, . .’L'7)9 If ASSUmtpion
3.1 holds and
lpi(x1, ooy @)l < (o1 + -+ [@P) vilar, - @)
i=1,...,n

then global adaptive regulation of (3.1) is solvable by the 1-D
C=° adaptive controller (3.4). ]

Corollary 3.6 indicates that global adaptive stabilization of
systems (3.1) with linear parameterization is achievable by a
smoothl-D (rather thas-dimensional [20]) adaptive controller.
However, the feedback design methods in [20] and this paper are
substantially different. Indeed, the technique in [20] can only be
used to deal with triangular systems with linear parameteriza-
tion, and is by no means applicable to the nonlinearly parame-
terized case.

Remark 3.7:1t is worth pointing out that the two con-
trol schemes also result in dramatically different adaptive
controllers. As a matter of fact, for the high-order, linearly
parameterized system (3.1) with ardimensional unknown
paramete®, the adaptive controller obtained in [20] is auli-
mensional dynamic state compensator which has been viewed
as the simplest adaptive controller in the literature, because
the order of the adaptive compensator is equal to the number
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of unknown parameters. However, using our new feedbaekich is positive—definite and proper. Then
domination design method, it is possible to construct a smooth. potl
1-D adaptive controller that achieves global state regulation’! < —(r+ 1)[[=]]
no matter how big the number of unknown parameters is. In =+ (7 + 1)|&1|(
other words, a significant feature of the new adaptive regulator da(2)
presented in Theorem 3.4 is itsinimum-orderproperty. That -<x§“ + ¢1(z, 71, 0) — 92
is, the order of the dynamic compensator is equal to one and, )
hence, is minimal. Using Lemma 2.1, Assumption 3.9, and the fact fhat p1, it
is not difficult to show that there are smooth functiepéz, =)
B. High-Order Cascade Systems ando(z, z1) satisfying

po 1 |$1|Joo)h(z7 x1, 9) +£{)0_P1+1

zZ

f(z, 1, 9)) — 60.

In this subsection, we briefly discuss how the adaptive stabi-y, . _,. potl Po Po
o o . <—=(r+ 1)z + z||P + Z, £1)0©
lization result obtained for triangular systems can be extended ' ( Iz 2l Il 62 )0z, 1)

Ppo—p1+1,_p1
to the following class of cascade systems with nonlinear param- +& T2

eterization: &P (2| 4 (€ (2, 1) — 68,
z :f(zv &1, 9) (328)
& =25 + 1z, w1, 6) Similar to the argument in the proof of Theorem 3.4, one de-
duces from Lemma 2.4 that
byt =2+ (2 1 s 2o, ) €127 + €17 0 (z, 21)©
By =ul + ¢z, w1, ..., Ty, O) (3.24) < {M et (s xl)} o
T 1462 ’
where(z, 1, ..., x,) € R"™ represents the system stateg 1
R is the control_input and € R? is an unknown constant < 1 +£{ao+1wl(27 21)A /14 &2
vector. The functiong(-) and¢;(-),: =1, ..., », are assumed 2
to be smooth, vanishing at the origin, =) = (0, 0). (B2 C— -
The following assumptions are a modified version of As- + 14 62 +& Wiz )| O (3.29)
sumptions 3.1 and 3.2. ] o
Assumption 3.8:p; > --- > p, > 1 are odd integers. for a smooth functior; (z, z1) > 0. Likewise
Assumption 3.9:There are continuous functions po—p1+1 . PR
2||P + 2, £1)0
bo(z, 1,60) > 0 and b;(z, z1, ..., x;, 8) > 0, such &1 Ill=] €l )3z 2)
that [l ]P0+ +1- [ e
< — +&° T @1z, 1)1+ 0?2
f 2y L1, ¢
I m)H P M o+l (N © 3.30
< (||l2)|P* + |w1]?) bo(z, %1, 6) (3.25) ey + &7 o) (3.30)
T\~ g ey Ly, 0 ~, i i
¢ (<7 i N N pz_)| . wherew (z, z1) > 0 is a smooth function.
< (2P e [ e ) Substituting (3.29) and (3.30) into (3.28) yields

cbilz, 1, ..., x4, 0), i=1,...,7 3.26 .
( 1 ) ( ) ‘/1 S —7’||Z||p0+1 +£{)0—p1+1x]2)1
Theorem 3.10:Suppose there are a smooth Lyapunov func-

tion U(z), which is positive—definite and proper, and a smooth + & (2, 1) + @1 (2, 11)) /1 + ©2
function «(2) with «(0) = 0, such that R .
o +(m()+6) (vi() - )
2, 1, 0) < —||7||Pe T+ |z —a(2)| (2, 1, ) (3.27
5 16 O S AP —a@len ) G2
wherepo > p; is an odd integery(-) is continuous and < 2||z||Po+

o(z, z1, 0) < (||z||P° + |z1|P°)h(z, z1, 8) for a C° function () 1102 + & (w2, w1) + @12, 1)),

h(z, x1, ) > 0. Then, under Assumptions 3.8 and 3.9, there +

exists a smooth, 1-D adaptive controller (3.4) that solves theObserve that the’= virtual controller

global adaptive regulation problem of (3.24). . ~ \/72 L/p
Proof: The proof is similar to that of Theorem 3.4. The wy = =&(r+ (wilz, #1) + oz, 21))y 1+ 6%)

only difference is that at Step 1, we choase= a(z) instead | anders

of 7 = 0. For convenience, we give the first step of the proof.

Leté; = #1 — a(z) and® = © — O. Consider the Lyapunov V; < —r (||z||f’°+]L + 5{’0“) 4 gpomprtligp
SL{JO*P1+2 é?

function - 2
+(m +©) (‘111(27 r1) — @>
Vi(z, 21, ©) = (r + DU(2) + Po—pL+2 T which completes the proof of Step 1.
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The remaining part of the proof is analogous to that of The- Remark 3.12:Due to the nature of the feedback domination
orem 3.4 and is, therefore, omitted. B design, itis not difficult to conclude that Corollary 3.11 remains
In the next section, we shall prove that all the assumptionstotfie for the following uncertaid’® system:
Theorem 3.10 are automatically satisfied for partially feedback .

linearizable systems with a triangular structure, and hence they® = Fi+1 + @i (@, 8, 0) wnpri=u, i=1 "3”32
are nothing but aigh-order version of partial feedback lineariz- . _ . (3.32)
e as long as there exist continuous functiofsy, ..., z;, 8) >
able condition )
0,%=1,...,n,such that
C. Feedback Linearizable Systems |ps(, t, O)] < (|z1] + - + |z )bz, ..., 24, 6). (3.33)

So far, we have investigated adaptive control of high-order tri- ¢ f5110wing seemingly simple yet nontrivial example illus-
angular systems with nonlinear parameterization. We now df?étes the application of Remark 3.12 and Corollary 3.11.

cuss a special case of (3.1), whose adaptive regulation witheynynje 3.13:Consider the nonlinearly parameterized
global stability is rather important and has occupied a Ce”t@stem

role in the nonlinear adaptive control literature.

Consider a class af nonlinearly parameterized, feedback PO Oy
linearizable systems of the form (14 0ox3) + 23
&g =3
&y = w3 + ¢1(w1, 0) I3 =u (3.34)

where#; and#, are unknown parameters.
Tl =Tn + Gpo1(T1, -y Tno1, 0) This system does not have a triangular structure but is of the
b =t a2 6). (3.31) form (3:32). Observe thaty (. ) = 2 /(1 + s+ 23)
satisfies the condition (3.33). Indeed, a direct calculation gives

In tr_le literature qf which we are aware, only few resul.ts |1 (2, 0)] < |21|by (1, 6) = 220

studied the adaptive control problem of (3.31); see, for m_'th

stance, [2], [23], and [4], in which adaptive control of a" )

subclass of systems (3.31) was investigated, under the re- bi(wy, ) =|21]© © =|61[(1 +63). (3.35)

strictive convex/concaveparameterization condition. WhenBy Remark 3.12, global adaptive regulation of the nonlinearly
¢i(zy, .., w3, 0) = @ilwy, ..., )b, (3.31) reduces to a parameterized system (3.34) is solvable by a smooth adaptive
feedback linearizable system with linear parameterization f85ntroller. In what follows we illustrate how a smooth, 1-D
which adaptive regulation was addressed in [14], [24], [25}4tive controller (3.4) can be explicitly constructed for (3.34).
and [18]. _ _ _ _ We begin by considerini; (z1, ©) = (22/2) + (62/2), 0 =
In what follows, we illustrate thawithout imposing any con- 0_0 A straightforward computation shows that
dition, global adaptive stabilization of the nonlinearly param- )
eterized system (3.31) is indeed possible. As a matter of fact, Vi <ziza+23y/14+ 220 - 66
using Theorem 3.4 it is straightforward to deduce the following .
important conclusion which was recently proved in [22]. < —3a] + z1(z2 — 2b) + (\If1($1) - @) S/
Corollary 3.11 [22]: For nonlinearly parameterized feed-

back linearizable systems (3.31), whe¥g0, ) = 0 for all where
Q € R?, the problem of adaptiye regulation with global stability bz, @) S <3 + /1 +a? @)
is solvable by a”>° 1-D adaptive controller of the form (3.4).

Proof: The resultis a direct consequence of Theorem 3.4.
Obviously, Assumption 3.1 holds automatically for feedback Uy (1) =27 1+ a3
linearizable systems (3.31) becayse= --- = p,, = 1. Since

S . ) _
di(x1, ..., 3, 0) is C* and¢;(0, #) = 0, using the identity N_ext, choosela(zy, &, ©) = Vi(x1, ©) + (£/2), with

F(X)—F(0) = A(X)X, with X € R™ andA(X) € R™*™, %2 = %2 — 3. Then

ields . A\ = s
y Vo < =327 + (‘Ifl(xl) - @> O +¢& <$3+$1—aii 372)
: oz} oxy -
@y s @, ) =Y wjaq (@, ..., @, 0 624 0-622 4, (3.36
Pi1 ) ; a1 ) & g5y 1)=&~ 2 6. (3.36)
for C° functionsa; ;(-), By (3.35)
i=1 ..., n. ox} or3| ,
M < s}
& 52 00| < el | 52 ot

This, in turn, implies the existence of a continuous function N2 ST A
bi(xy, ..., z;, 6) > 0, such that Assumtpion 3.2 is satisfied. <22+ 22 <8$2> vi+e? o)
Therefore, Corollary 3.11 follows immediately from Theorem dxy

~ L~

3.4. ] + Ao(x1, 2, ©) (3.37)
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where
U , o (0z3\? V1+62
Aa(xy, 12, ©) = ——== + &7 9 ) a4
V1+ 62 4

Substituting (3.37) into (3.36) yields

Vo < =227 - & + (‘112(3717 2, ©) — @) <

where

A~

\Ifg(xl, L2, @) :\111(1’1) +A2(J}1, L2, é)
ok o’
——52—3714-8 — &oui <8x1>

1+02 . oz .

At the last step, considerVi(z1, &, &, ©)
Vo(x1, &2, ©) + (£3/2), & = w3 — 3. Clearly

Vo= Vot o (0= 5o (o2t 00) -

O0xa ’ 96

(3.39)

Similar to the estimate (3.37), we have

oz} T 1 5 5 (0% 2
Y Pt
axld)l()‘ =5 T3%% g,

*\ 2 .
.\/1+62+ <§2 aa”g) & + As(xy, 2, 73, ©)O  (3.40)

8x2>
00

+&a(2s —23) (3.38)

O+ —= Vo1, z2, ©).
56 2(71, 72, O)

* * * .
Ox 8x3x 0 4

Ozt \ 2 N ozt \ 2
+&3 3) 1+@2+< ?)
% <8x1 \/ 96
This, together with (3.38) and (3.39), implies
Vs <—2af— 52 (‘P2($17 w2, ©) + As(") — é)
83:*
O+ 5’")
< &% @ * 96
ar}
+&sv — @( 2(+) + As()) — As(:) 2

wherew is the new control input satisfying

o’ o 1., [0x3\°
=v—|&- — - 6
w=v (52 T 2 dzs Zst 2 L2 911

.\/1 + 624 <£2 ax?f . (3.41)
96

Note that
oz 22 1 ozt \?
_A 2 T 22,2 3
3(+) =7 2 &31 <8a:1
*96) P ab”
Hence

Vi < ot (B +4s() ) (€

Oz} 8355)
06 06
1 o [ O} 2
553];1 <8$1>
2
-\/1+é2 < 83:2) ax?).

Clearly, the smooth adaptive controller

0z} B
+¢&3 (U ~ 50 (W2(+) + A4s(+)

0 =Uy(x1, 2, O) + As(x1, 22, 23, O)

83(;;, (Wa(-) + As(4))

1. 5 83:;;)2 A < 8x§)2 ox}
+ 1+02+ A 5
g 71 <8x1 “96) © 96

(3.42)

is such thal/sz(z1, &, &, ©) < —x2 — &3 —&3. Hence, the 1-D
C= adaptive controller (3.41) and (3.42) makes the nonlinearly
parameterized system (3.34) globally stable, with asymptotic
state regulation.

We conclude this section by extending Corollary 3.11 to a
class of cascade systems

z = folz, x1) + v1f1(%, ©1, 0)
&y =x2+ ¢1(2, x1, 0)

Tp =+ Pr(z, 1, ooy Tny O) (3.43)

wherez € R™™", ¢;(-), ¢
are C* functions with ¢;(0,
fo(0,0) = 0.

Under mild conditions on the zero dynamics of (3.43), it is
possible to prove that global adaptive regulation is achievable
for the cascade system (3.43). Indeed, the following result can
be deduced from Theorem 3.10.

Theorem 3.14:Consider a nonlinearly parameterized cas-
cade system (3.43). If there existsC& Lyapunov function
U(z), which is positive—definite and proper, such that

=1, ,ryandfr(), k = 0,1,
) = 0Vé# € R® and

a
o5z 0) < =l (3.49)

<

Then, the problem of adaptive regulation with global stability is

solvable by a smooth, 1-D adaptive controller of the form (3.4).
Proof: The proof is carried out by simply verifying that

all the hypotheses of Theorem 3.10 are satisfied in the case
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of cascade systems (3.43). First of #B.8is clearly true be-  Assumption 4.2:For ¢ = 1,...,n, there exist
causep; = --- = p, = 1. By hypothesis, the! functions ¢; ;j(x1, ..., z;, #) such that
pi(z, 21, ..., 2, 0),i =1, ..., r, can be decomposed as -
di(z, 1, .., 25, 6) :zTaijo(z, L1, oensy Ty, 6) ¢i(z1, ooy iy, 0) = Z xi—l—l%:j(xl’ s wi, 0) (4.2)
+ Z a:kaiyk(z, L1y vy Tiy 9) |<Pi,j($17 <oy Ty, 9)| < (|-T1 Pird o |$Z pi_])
k=1 -bi7j($1, voey Ty 9) (43)
for C° functionsa; 1 (-)
whereb; ;(z1, ..., z;,6)>0,5=0,1, ..., p; — 1, are con-
which leads to (3.26) witly;, = 1,7 = 1, ..., r. Due to the tinuous functions.
same reasoning, there exist continuous functigis, =) and The main result of this section is the following theorem which
g1(z, 1) such that generalizes Theorem 3.4.
Theorem 4.3:Under Assumptions 3.1, 4.1, and 4.2, there is a
[z, z1, 0) = folz, 21) + 21 f1(2, 21, 0) smooth,1-D adaptive controller of the form (3.4), which solves

=g0(z, z1)z + z191(2, 1) + x1f1(z, z1, 0) the problem of adaptive regulation with global stability for non-
linearly parameterized systems (2.4).

which implies (3.25) witlp; = 1. In other words, system (3.43) Before proving Theorem 4.3, we first introduce a very useful

satisfiesA3.9as well. Finally, it is easy to see from (3.44) thatemma.

the condition (3.27) in Theorem 3.10 holds for the choice Lemma 4.4:For the uncertain nonlinear functiods(-) and
¢:(-) satisfying Assumptions 4.1 and 4.2, respectively, there are
Po —1 oz a constan® > 1 andC* functions¥;(x1, ..., z41) > 0,
2,0 (x1, ..., ;) > 0, such that
' dz(xv U, 9) S’?i(xlv IR xi-l—l)@ (44)
Clearly, (2, x1, €) is continuous. SincédU/dz)(0) = 0, it Ni@ts o, @)
follows from the Taylor expansion formula that there i€ |fix1s s @irs O)] S ——5——" [zia|”
functionh(z, z1, 8) > 0, such that + (|lz? + -+ )
0< ¢(z a1, 8) < 2llh(z, @1, 8) < (l2ll + a1 Dh(z, @, 6). s @O, (45)
Proof: Whenp; > 1,fork =1, ..., 4, using Lemma 2.4

According to the previous discussions, we conclude that all
the conditions of Theorem 3.10 hold wheg = p; = =
p. = 1. Hence, Theorem 3.14 follows from Theorem 3. 1C| i i J

Remark 3.15:In the recent work [22], global adaptive stalxiﬂxk bi, i ()] < i
bilization has been shown to be possible for a larger class of '
cascade systems with nonlinear parameterization than system
(3.43). Note that Theorem 3.14 remains true if (3.44) is replacaﬁj]ermr
by the condition that = fo(z, 0) is GAS and LES.

elds

Db

(I )

23

> 0 is a smooth function to be determined later.

Thus
IV. NONLINEARLY PARAMETERIZED SYSTEMS BEYOND A o /,(.)‘ < 4 w() + pi—1J
TRIANGULAR STRUCTURE cHTn i i
The main f far h n on the problem of iv i M) .
e main focus so far has been on the problem of adaptive ~[b§°j(~)7r i) /(p J)Z lexlP. (4.6)

regulation with global stability for a class of triangular systems '

with nonlinear parameterization. We now turn our attention to

investigating the possibility of extending the adaptive contrélombining (4.6) with (4.2), we have

results obtained in the previous section to a larger class of non-

linearly parameterized systems such as (2.4), whicheyond |Pi(z1s ooy wigr, 6)]

a lower triangularform. i oo _ bl
To design a globally stabilizing adaptive controller for sys- = % i [P() Z I+ (™ + - 4 ™) Z

tems (2.4), we need introducing a set of sufficient conditions i= =0

that characterize a subclass of nonlinearly parameterized sys- i) [bz)q(.)ﬂ—j(.)]l/(f’“” ) 4.7)
tems (2.4). D v
Assumption 4.1:There exist C< functions  ~hg0se
Aizy, ooy @) > 0andp;(xy, ..., 2,41, 8), such that
Ny pidilrn @)
)\7‘,(371, ,$7)Sd7($, u, Q)S/M(ail, ...,.775,4.1,9), 7T($1,...,$7,)— opil >

izl,...,n. (41) [ j=1 /



LIN AND QIAN: ADAPTIVE CONTROL OF NONLINEARLY PARAMETERIZED SYSTEMS 1259

Then Inductive Step:Suppose for system (2.4) with dimensibn
there are a set of smooth virtual controllefs ..., z} , de-
|pi(z1, ..oy Tig1, 0)] fined by (3.6), such that
)‘Z() P pi pi
= 2 +(|:L’l + +|$Z ) Vk(£17 ,51“6)‘

. Bi(.’L'l, vy Ty 9), for aCO B7() (48) (2.4)

< —(n—k+1) (5{’1“ ot ”1“)
Clearly, the previous inequality also holds wher= 1 [i.e., by

: Axl(- — * Py
choosingB () = b; ()] n <uk<-> + #) e ”“\ oy — |
Now, it is deduced from (4.8) and Lemma 2.1 that there are
%mOOthfunCtionS/i(xla ERE) xi)aﬁ/i(w’la ey $i+1)7Di(9) and + (\Ijk(gla ERE) Ska ) )(@+nk(£1a L) gka @))
D;(6) such that (4.10)
Bi(xlv ceey L,y 9) S’}/i(.’El, (RS xZ)Dl(e) where
di(z, u, 0) zl:‘z((xla ) xz-l—l)aé)(g) k £1?1—Pj+2 o2
S YilZL, - T ) UilV)- Vilée, ..., &, ©) = = 4
) Wy & ©) ;pl_ij 5
Set® = Y"1 (D;(8) + D;(8)). Then, (4.4) and (4.5) follow
immediately. B is a positive—definite and proper Lyapunov function. Moreover
Proof of Theorem 4.3:The proof is based on a combina- .
tion of adding a power integratgl.emma 2.1 and Lemma 4.4, 0 <W(&, ..., &, ©)
in the spirit of Theorem 3.4. < [eprtl pr+1 A
o ~ A + -+ & &1, €, ©
Initial Step: Let ©(t) = © — O(¢), where® > 1 be = (Sl S )ak(& - ©)
the unknown constant defined in Lemma 4.4. Consider for C*an () 2 0. (4.11)

Vi(z1, ©) = (1/2)2% + (1/2)02. By Lemma 4.4, it is clear

thatz,—subsystem of (2.4) satisfies Then, (4.10) and (4.11) are also true when the dimension of

system (2.4) is equal tb+ 1. To prove this claim, consider the

. . Lyapunov function
Vi(zy, ©) < dy(x, u, O)z 2 +)\1—()|x1x72)1| YAPUNOVIHNEH
2 — P42
41 B’ . - . 52—1’—1])1»‘#1
+28 Ty (21)(© + ©) — O)O®). Vi1 (&1, ..y Gerr, O)=Villr, .., &, O)F 4L
PL—Pr11+2

With the choice of the smooth virtual controller Clearly, taking the time derivative df,..; along the solutions

= 1/p1 of thek + 1-dimensional system (2.4) gives
. 2n 42y (z1)VO?2+1 Y 24)9
Ty = —T1 .
)\1(1’1) Vk—l—l(')
= —z1 51 (21, @) <—(n—-k+1) (5{)1—1—1 + -4 p1+1)
)\k N — P P
we have + <Nk() + —2( )> & m—H‘ |37k+1 xkikl
Vi(zy, ©) < —naP'™ 4 dy (2, u, 0)zab! + (\yk() _ é) (@ + 77k(.)>+ 5?4._1”““
A (- A (- . X -
A0 - A e (w0 - 600) 001 Oty . Outyy s
g (- )$k+2 +éra(t) Z Oz Lj— 90 e
whereV¥,(z;) = a:f"" yi(x1) > 0. Sincezzt' < 0, itis = I
easy to deduce from Assumption 4.1 that (4.12)
Vi(zy, ©) < —nal T 4 dy (Dxaht — A ()zpat Combining the estimation method in Theorem 3.4 with Lemma
Al () 4.4, one can prove that there is a smooth functign, (-) > 0,
+ 5 ! [ = 5 |y such that
+ (i(21) - 6(1)) 6(t) R k axm ‘
1 Ay (1) St ‘ Pr1() Z
S _nx{h—i— + <Nl($17 x2, 9) + 2 ) |‘T1| =t
#p1 Py ~ P1+1
Jof = 23+ (Valen) - O1)) (B(1) +m) Ak+1( ) Lo 41 pss E
(4.9) : G e [T

with m = 0. £f+—’l—IWk+1( )\/ éQ +1
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i gritt Define
{
3(1+62)(1+172() pg1(érs - &r1s O)
22 p1+1
:\I/k(gl, ...,Sk,é)-i- l_2 5
F T, o G, ©)] 6. (413) AN +m{)

+ U e () + orga ()]
77k+1(£17 Tt £k+17 é)

Iz
L. . . . _ p1—Pr+1t+l k+1
Similarly, the following estimates hold for a smooth function = (&L, ..., &y O) + G 56
wrt1() 2 0
Then, (4.15) can be rewritten as follows:
)‘k() 1—pr+1 *
<Nk(')+ 9 ko ‘ |23 — 2ty Viers ()
AL . . +1 +1
S<’7k($1,---,$k+1)+M> S—(n—k—k%)(éﬂfl e )
—pi o AR . ,
Jepr |l - s e P Q" el e Ol g

K
E £IP1 +1 p1+

=1 +1 \/Ai +£k+ll[wk+l(')+wk+1(')]\/é27+1
< =+ (/62 +1

6 k1 Wkl + (\I/k+1(-) - @) (é + 77k+1('))
23 g+
i=1

3(1+0%)(1+ ()

E 5171 +1

3(1+ 62)(1 + i ()

+eP (6 L G, ©)] 6. (4.14)
o (S St ©) P @ra () + wrer ()| ()

Substituting (4.13) and (4.14) into (4.12) yields

- oz,
=G = e () (4.16)

Vi1 () <-(n-k+2) (5{‘*14_ + p1+1)

Finally, it is not difficult to show that
+dk+1(') P1—Dprt1+1l praa

k1 Lhto &
2 p1+1
)‘k-i-l( ) P1—Pr+1tl Pry1 IZ: Sl
+ S k2 =

3(1+é;)(1+772(-))+££ﬁl(wk+l(')+wk+l(')) ()
~ k
+ 5551 [Wk+1( )+ wrn (1Y O2 + 1

2 Z p1+1

_ ar;
_’_£P1 Pr+1+1 k:l—l \Ijk+1(')

3(1+ @2><1 +73(%) F

k
o i 3 TR GOt O RO+
+HET @ () F @ ()| © =1
k+1
+ IS Bugni(€n s G, ©). (4.17)
_ P1—Pk+1+1%é j=1
k+1

96
(\Ijk(glv "'7£k7 )

(Z)) Substituting (4.17) into (4.16), we arrive at
(O mla o & ). (415) Vi) S—(n—k) (' 4+ 4+ 4 7)



LIN AND QIAN: ADAPTIVE CONTROL OF NONLINEARLY PARAMETERIZED SYSTEMS 1261

+diy1(7) fi}pk+1+lxz’;+21 Corollary 4.6: The global adaptive regulation problem of
(4.21) is solvable by a smooth, 1-D adaptive controller (3.4) if

)‘k-l-l(') ‘gpl —Pk+1+1xpk+1
k

- 2 1 k42
prt+1{ — Ao R |¢i($la <5 L4l 9)|
+ & <(wk+1(-)+wk+1(-))\/ © +1+’Yk+1(-)> < ailwipa] + (o] + -+ zi)bilan, -, 20, ) (4.22)
+ (\Ifk+1(-) - @) (@ +77k+1(-)) (4-18) \ihereo < a; < 1, fori = 1. nandz,. = .
Proof: It follows immediately from Theorem 4.3 or Corol-
where 9,.1() = (@i () + wiaq(- Iy 114 lary4.s. 1
Ek-{—l BZ;::)(')(& (gk’:l(@)) >0 igggr)rzoothzlh(n)ction A nice application of Corollary 4.6 can be demonstrated by
j=1 P(k+1)5 \S15 - - -1 Sk+1, z .

solving the adaptive regulation problem for a nonlinearly pa-
rameterized system with a nontriangular structure.
Example 4.7: Consider the planar system with nonlinear pa-

Now, it is easy to see the smooth virtual controller

~ 1/pw . .
. 2n — 2k + 2pr41(E1s -, Engrs ©) /P ameterization
Lpqo = —&rt1
Akt1(®1s -5 Thtr)
(419) T =$2+$1(1+$§)1/39f1, 91 >0
With pry1(-) == (Crg1 (1) Fwig1(4) VO +1+A41(-) 20 &y =u+1n(1+ (foz2)?), 6 €IR. (4.23)
being smooth, renders
The aforementioned systemis of the form (4.21). Using Young's
Vi1, ooy Gy ©) inequality, it is easy to prove that
< —(7’L— k.) £P1+1 + ...+£I?1+1
( I ) o, )] <l (14237 167
k413" —prt+1+1 . *Pp

(O 5D e ey et < ] 167+ Blaal + 4 fotol

+ (\I/k+1(£17 s Gt é) _ é) < % |z2| + |21] (1 + %.’L’%) (/4 91n” 61 (4.24)

- (@ + 1 (&ns -5 St @)) . (4.20) On the other hand, by the mean value theorem we have
This completes the proof of the inductive step, from which a |p2(x, )] < |62] | 2. (4.25)
smooth, 1-D adaptive controller can be easily constructed for
the nonlinearly parameterized system (2.4). g Therefore, the condition (4.22) is fulfilled. By Corollary 4.6,

From a combination of Theorem 4.3 and Lemma 4.4, it is ngtobal adaptive regulation of system (4.23) is solvable by the

difficult to deduce the following result. 1-D smooth adaptive controller (3.4). A globally stabilizing

Corollary 4.5: Under Assumptions 3.1 and 4.1, and (4.5), themooth adaptive controller can be explicitly constructed, as
problem of global adaptive regulation for nonlinearly paraméyiefly illustrated as follows.
terized systems (2.4) is solvable by the smooth adaptive conUsing (4.24) and (4.25), we defirte = [62] + OO et
troller (3.4). I © be the estimate & and consider the Lyapunov function
Whenp; =1, d;(-) =1,i =1, ..., n, (2.4) reduces to the
?onlinearly parameterized system with controllable lineariza- v, (4, z,, ©) = L [a:f + (22— a)?+ (6 — @)2}
ion

. where 37; = —371/31(371, @) and /31(371, @) = 6+
3771 =z + ¢1(21, 22, 0) (3_‘_3:%)61:?/4\/14_@2_
Ty =x3+ P2(21, T2, 23, 0) Following the design procedure of Theorem 4.3, it can be

shown that the smooth adaptive controller

T =u~+ Pp(21, ...\ Tp, u, 0). (4.21)

X 1 2
&=t (14 5ot ) /it T b (oa - 3al)

It is worthwhile pointing out that the problem of adaptive reg-

ulation with global stability remains unsolved even in the case v = —(z; — %) <% +p1() + p2()Y 1+ 6% + p3(')>
where the unknown parametgappears linearly in (4.21). For

the linearly parameterized system (4.21), oldgal adaptive (4.26)
regulation results were obtained [14], [25]. However, using the

new design technique proposed in Theorem 4.3 or Corollary 4m3akes (4.23) satisfy
one is able to derive a sufficient condition under which a glob-

ally stabilizing adaptive controller can be explicitly constructed. Vy < —z2 — (z +z151()* <0 (4.27)
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Fig. 1. Transient response of the closed-loop system (4.23)—(4.26), witly. 2. Mass-spring mechanical system.
21(0) = 22(0) = 1, ©(0) = 0. True values of parameterg— = 1 and
6, = V2.

whereF,,(y) is the restoring force of the spring. Assume that
F,, = F,,(y), i.e., is only a function of the displacement and

where F,,(0) = 0. Suppose that we have little knowledge about the
) spring which may be a linear one or a very complex nonlinear
S _ 5025 5 05 Bi() spring with unknown parameters. As discussed in [15], the

P =3 Oxy 39zt restoring force of the spring can be modeled as

1+6?2 o’ 1,5\ 20\
p2() =1+ </31(-) + ‘ <1 + Za? ) e/ 1 :
2 dx1 37t Fo(y)=ky Z ay (5.2)
=0

1 2 .1‘2 2 2
p3(-) = <$% <1+—x%> e’cl/‘*—i-—lAQ) (34 x3)2em/?
3 2420 wherea’s andg are unknown parameters. Note that (5.2) rep-

5 o N resents a family of springs. For example, it becomes a linear
+ pQ(')\/l + 7 \/1 + (22 — 25)2(3 4 2y)e” spring wheng = 0 andag = 1. In the case wheg = 2, g = 1

and anda; = 0, (5.2) represents a soft springa$ < 0 and a hard
O 1 L2 spring ifaz > 0.
83:? =p1() + 3 a2 (7+ x%)@'l“- Example 5.1: Consider adaptive control of the mass-spring

mechanical system with nonlinear parameterization. We shall
show that the problem of adaptive regulation with global sta-

The simulation result shown in Fig. 1 indicates that thﬁility is solvable, irrespective of the values ofand a;, i —

1-D adaptive controller (4.26) achieves global stability of th .
closed-loop system as well as asymptotic state regulation, Withi';)'l:’)egin with, we define; = y andz»

. . = ¢ which transform
a satisfactory dynamic performance and a fast convergent sp@oeq) into the state-space form

of z(¢).
jﬁl =2
V. APPLICATIONS AND DISCUSSIONS . 1
, , _ _ Ty =— (u— Fyp(x1)) (5.3)
In this section, we use both physical and academic examples m

to demonstrate, in the presence of nonlinear parameterizatioggerem, > 0 can be an unknown mass.
some interesting applications of the new adaptive control strate-Qpserve that no matter how big ofis, there exists an un-

gies developed so far. known constantg > 0 andé; > 0, such that
The first example is the mass-spring mechanical system
shown in Fig. 2, where a massis attached to a wall through a |Fop(@1)] < Kl |(1+ |21]7) < |21]e"1/26,. (5.4)

spring and sliding on a horizontal smooth surface, i.e., resistive
force caused by friction is assumed to be zero. The massWithout loss of generality, in what follows we assume that
driven by an external force which serves as a control variable1/m > 1.

Lety be the displacement from a reference position. Obviously, the nonlinearly parameterized system (5.3) satis-
By Newton'’s law, the equation of motion for the system ifies automatically all the conditions of Theorem 4.3 with= 2
given by andp; = p. = 1. To explicitly design a globally stabilizing

smooth adaptive controller, considér(z;) = =7/2 for system
mi+ Fo(y) =u (5.1) (5.3). A direct calculation give$; = —2z7 + x1£2, where
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& = xo + 2z1. We then construdts (1, x2) = Vi + (£3/2).

Clearly,

. 1 1
Vo = —237% + 25% — 337152 + E £2U, — E Sngp(a:l). (55)

By (5.4), we have

1
-3 — 2 &F,
37152 m§2 p($1)

1 =
<|z1&o| <3 + — 6m1/291>
m

< |z160]e"i/20 (5.6)

where® = 3 + (1/m)6; > 0is an unknown constant.

Example 5.2: A single-link robot with one revolute elastic

joint can be, under appropriate conditions, modeled by the non-

linearly parameterized system [23]

(=0

G :JEICg—HmT‘fl sin <%> — %Cl

{3 =0

bi=qut (G- G) (5.11)

wherem, I, K, .J1, .J,,, andé are unknown positive constants.

Let ©(t) be the estimate dd. Define a positive—definite and ~ Global adaptive regulation of system (5.11) was achieved in

proper Lyapunov function
B 2

©
U(xlv T2, @) = ‘/2(.1'1, .’L'Q) + 77

Using (5.5) and (5.6), it is not difficult to show that

. 1 A~
U< —20f +26 + — Gou+ |z1&2]e"1/20 — 66,  (5.7)

By the completion of square
ot + 1+ 0%
V1462 4
o V14023 A
1

|$1£2|6m$/2@ S

(5.8)

<22+ f@wp(ggl, 2, ©)0
where
R 2 A /1 @2 2 ac?
\I/(azl, T2, @) = ! + + 526 .

V1462 4
Substituting (5.8) into (5.7) yields

vV1+ é%“”i@)

. 1
U< —g24 = 212
S $1+m52u+£2< + 4

+ (\If(xl, 22, ©) — é) 6. (5.9

Thus, the smooth adaptive controller

é I\I/(.Tl, T2, é)
V1462716

u = _52 <3 + L)

4

is such thal/ < —z2 — ¢2.

with © =0 - 6.

(5.10)

[23], under the assumptions that all the unknown positive pa-
rameters belong to knowncompact set. However, this cru-
cial condition can be significantly relaxed according to our new
adaptive control schemes. As a matter of fact, by Theorem 4.3,
the only requirement for achieving global adaptive regulation
of (5.11) is thatK'/J; andf/J,, are bounded below by known
positive constants, but their upper bounds need not be known.

The final example is devoted to adaptive control of a nontri-
angular system withincontrollablelinearization.

Example 5.3:Consider the high-order planar system with
nonlinear parameterization

iy =5 + z3|e |
iy =u (5.12)

where the unknown constaét> 1.
Clearly, (5.12) is of the form (2.4) babt in a triangular form
Observe that by Lemma 2.4,

w3larl’ < § a3+ 5 la* < 3 [adl+ § oy Pel/D M CTDO
(5.13)

where® = ¢(9/2(¢=1” Hence, all the assumptions of Theorem
4.3 or Corollary 4.5 are satisfied. By Theorem 4.3 or Corol-
lary 4.5, there exists a smooth adaptive controller that solves
the adaptive stabilization problem for system (5.12).

To design the adaptive controller, considér(z;, ©) =
(1/2)x? 4 (1/2)©2. Then

Vi < 2173 + 2wl + %x?e(l/s) W (1+2) g _ 9O,
Obviously, the smooth virtual controller

zy =—z11(z1, O)

1/3
Pz, ©) = {6 ARV I @2}

is such that

The effectiveness of the adaptive controller (5.10) IS )
demonstrated via computer simulation, with the parametess < —2x‘1*+§|a:1| |23 — 25340 (1 (1/8) ln2<1+w§)x41k_@)_

k=1, m=1a =as =asz =aq4 = 1,andqg = 4in (5.3).

3

The simulation in Fig. 3 indicates that the smooth, 1-D adaptiveNext' definet; = z; — 2% andVa (1, &, (:)) =Vi(z1, é)+
controller (5.10) does the job, i.e., globally stabilizing th@1/4)£§. A direct calculation gives
uncertain nonlinear system (5.3) and achieving state regulation,

with a good dynamic performance.

The next example is on global adaptive control of a
single-link robot with one revolute elastic joint considered, for

instance, in [10] and [23].

Va < 20t 43 | [af — o3*|+0 (§ /DI 0Dt - 0)

*
azs |

orh x
Slu— - =26). (.14
. (u iy - 2 ) (5.14)
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Fig. 3. Adaptive regulaton of a mass-spring mechanical systeffiig. 4. Transient response of the closed-loop system (5.12)—(5.19) with
state trajectories of (5.3)~(5.10) and parameter estimatton with =1(0) = #2(0) = ©(0) =1, 6 = 3.
21(0) = 22(0) = 6(0) = 1.

where
By (5.13), it is easy to show that

1 2 2
Wy, = — 6(1/8) In (1‘1'9’/’1)11‘1L + + 5202( )

83:2 83:2 5 3. L 3 1/8)m?(1+a?) 3 2+ 2@2
52 52 <§|x2| LA vo Finally, it follows from Young's inequality that
1 4 ax 6(1/8) lnz(l—l—mi)
< Z 37% + Sgpl() + <2+$% + 5392()) © ( )52 2 2()|£§| |-771| 3[3%()
(5.19) <Lt édna() (5.18)
where with
AN . 5 ax* 2 * *2 3 1 1
pi(x1, 22, ©) := 3 | 0x, (& + 385 + 3257) pa(*) ==~ <_ (/) (14at) | _ )
4 1\3 24202
L3 (5)|0u3 /3 /3
Z <§ 2 i+ 1) B . e(1/8) In” (142?) \/aTH A
307(-) ' :
6 3 < ) (1/6) n® (1+2%) c(1/8) In (1+27)
P2 xlv = L 2 n Ly
4 + p2()&5 (/&322 _.
2() 2 2T7 + 3[3%()
1 |0x3 " 4/3 Putting (5.17) and (5.18) together, it is easy to see that the
) <§ Oz Vart 1) smooth adaptive controller
are nonnegative smooth functions because 6= St 2t/ (i) 1l+2 5 +&3pa(zy, T2, O)
95| _ 4 D0 4 ot VIH 62
= 10 N
o, 63222, O)(1+ 23) w=6 (14 O+ ROVIHE () 0100 (519)
is smooth. ) .
Similarly, a direct calculation gives yieldsV, < —x}—¢£3, which in turn implies adaptive regulation
o . - with global stability.
2 || 23 — 25 <3 s |21 |22 — 23] [%5 z5?] The simulation result in Fig. 4 shows dynamic perfor-
< le +§2p3($1, ) (5.16) mance and parameter estimation of the closed-loop system
ith (5.12)—(5.19). It demonstrates that even in the case of nonlin-
wit early parameterized systems with uncontrollable linearization,
pa(a1, ©) =2 (%)4/3 +1 (4582())" > 0. global adaptive regulation can be achieved via the new control
Substituting (5.15) and (5.16) into (5.14), we have scheme.
V< -fei+g <p1(-) + (1462 + pg(->) V. CoNeLUSION

In this paper, we have provided a solution to the problem of
adaptive regulation with global stability, for a classmafnlin-
early parameterizedystems withuncontrollable linearization

(6622 ) (12-6) a0 2w (517)
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The systems under consideration are difficult to deal with bef13] ——, “Stabilization of nonlinear systems in the plan&yst. Control
cause they are usually neither feedback linearizable nor affine  Lett. vol. 12, pp. 169-175, 1989.

. . - ; 14] M. Krstic, I. Kanellakopoulos, and P. V. Kokotdvisonlinear and Adap-
in the control input. More significantly, they mayot be in a five Control Design New York: Wiley, 1995.

lower triangularform and involve nonlinear parameterization. 15 H. khalil, Nonlinear Systems New York: Macmillan, 1992.

The latter has been known as a challenging problem in the field6] A. Kojic, A. M. Annaswamy, A. P. Loh, and R. Lozano, “Adaptive con-
of nonlinear adaptive control. trol of a class of nonlinear systems with convex/concave parameteriza-

. . . tion,” Syst. Control Lett.vol. 37, pp. 267-274, 1999.
By using the tool Ofadd'ng a power |ntegrat0[19], [20] [17] A. Kojic and A. M. Annaswamy, “Adaptive control of nonlinearly

and coupling it effectively with the new parameter separation  parameterized systems with a triangular structure,”Pioc. 38th
technique proposed in Section 1, we have shown how a IEEE Conf. Decision and ControlPhoenix, AZ, Dec. 1999, pp.
. . . s 4754-4759.

smooth, one Q|menS|onaUapt|ve antm"er Cfan be e?<pI|C|tIy [18] W. Lin, “Global robust stabilization of minimum-phase nonlinear sys-

constructed, in a systematic fashion, making the inherently ~ tems with uncertainty,Automaticavol. 33, pp. 453-462, 1997.

nonlinear systems with nonlinear parameterization global stabl@9] W. Lin and C. Qian, “Adding one power integrator: A tool for global

with asymptotic state regulation. As a consequence, a solution stabilization of high order lower-triangular systemSy'st. Control Letf.
btained to the problem of global adaptive stabilization o vol. 39, pp. 339-351, 2000.

was o ) 8 p g ; p T f20] ——, “Adaptive regulation of high-order lower-triangular systems:

feedback linearizable systems with nonlinear parameterization, = Adding a power integrator techniqueSyst. Control Lett.vol. 39, pp.

without imposing any additional condition such as convex or  353-364, 2000.

At [21] ——, “Adaptive control of nonlinearly parameterized systemspPiac.
concave parameterization. . . . . 40th |IEEE Conf. Decision and ContyoDrlando, FL, Dec. 2001, pp.
Due to the nature of our feedback domination design, it iS  4192_4197.
straightforward to prove that all the adaptive control result§22] —, “Adaptive regulation of cascade systems with nonlinear parame-
obtained in this paper can be directly extended, as shown terization,”Int. J. Robust Nonlinear Contrplol. 12, [Online]: Apr. 5,

in Corollary 3.5, to nonlinearly parameterized systems (2.4 2002.
y 9.9, yp Yy ) 123] R. Marino and P. Tomei, “Global adaptive output feedback control non-

with unknown bounded time-varying signaisider appropriate linear systems, Part Il: Nonlinear parameterizatidEEE Trans. Au-
conditions such as Assumptions 3.1 and 3.2, or 4.1 and 4.2. tomat. Cont, vol. 38, pp. 3348, Jan. 1993. _ _
In other words, global adaptive regulation is achievable fot?*! ol 1’;‘;’;"“"“ Control Design Upper Saddle River, NJ: Prentice-
tlme-varylng.nonhnearly parameterized Sy_StemS SUffh as (2-435] D. Seto, A. M. Annaswamy, and J. Baillieul, “Adaptive control of non-
and (3.1), withd = 6(¢) and4: IR — IR* being a continuous linear systems with a triangular structurdEEE Trans. Automat. Contr.
function of ¢, bounded by arunknown constant vol. 39, pp. 1411-1428, July 1994.
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