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Abstract

The work presented here is in the area of decision
and control for autonomous unmanned aerial vehicles
(UAV’s). Specifically, we formulate the problem of gen-
erating near-optimal trajectories to follow in order for
several UAV’s to cooperatively search for targets in a
given area for which some a priori data about target
distribution is available. An algorithm that utilizes a
model of the cooperation is developed and a dynamic
programming implementation is presented as a solution
to this problem. Results from simulations are provided
to illustrate the usefulness of this approach.

1 Introduction

Directing autonomous agents to behave in an “intel-
ligent” manner provides for a very interesting prob-
lem, especially in cases where there exist many con-
straints on the control of the agents. In the particular
case of multiple autonomous Unmanned Aerial Vehi-
cles (UAV’s) searching for targets in an uncertain en-
vironment, this is certainly true. While the problem is
a “search” problem, there exist many factors that set
this problem apart from many of the classical search
problems, such as those discussed in [4]. For exam-
ple, optimal paths are desired, rather than an optimal
allocation of effort, and those paths are constrained
by, e.g., the limited ability of UAV’s to make high-G
turns. Additionally, the presence of multiple vehicles
brings the concept of cooperation among the vehicles
to the forefront, since it is to be expected that a team
of vehicles acting in concert would perform better than
a mob of vehicles acting independently.

The work presented here is part of a growing body of
research that is aimed at developing cooperative con-
trol algorithms that will allow a team of UAV’s to fly
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missions without direct human intervention, and in the
presence of uncertainty [5]. Polycarpou, et al., in [7],
develop a general framework for this problem.

This paper formulates the problem of multiple UAV’s
that must autonomously generate paths over the ter-
rain such that, given some a priori information, the
maximum number of targets in the environment can
be positively identified. A discrete time stochastic de-
cision model is formulated for this problem, which is
then implemented with a Dynamic Programming al-
gorithm. This approach has been successfully applied
to other UAV problems, as in [6]. To overcome the
computational complexity issues inherent in such an
implementation, approximations are used to produce
efficient sub-optimal paths for the vehicles to follow.

There are many applications for UAV’s like those mo-
tivating this work: emergency vehicles searching for
lost or stranded persons in dangerous environments;
autonomous munitions, searching for military targets
that will be subsequently attacked; or unmanned intel-
ligence gathering aircraft. In all cases, it is desired that
the vehicles respond to their environment intelligently,
where they begin with some knowledge of their envi-
ronment, which they utilize, and then cooperate with
the other vehicles in order to perform a better search.

This paper expands on the methods and ideas pre-
sented in [3]. While [3] concentrated on general ideas,
this paper presents a detailed treatment of the foun-
dations and implementation of the model and solution.
Also, the usefulness of the formulation is increased by
including, explicitly, targets in the cost function and as
part of the measure of effectiveness.

2 Problem Formulation

2.1 The Vehicles
The goal of each UAV in the search problem is to
move over the environment such that, at the end of
the search, the maximum number of new targets has
been identified. A vehicle must therefore plan a lo-
cal path over the environment to meet this global goal.



The path planning problem is discretized in time by
allowing the vehicle to only make decisions at discrete
time intervals. These intervals will hereafter be referred
to as “time steps”. The ability of the vehicle to make
turns is constrained by a discretization in space by only
allowing the vehicle to make a limited number (m) of
choices at each time step (e.g. for m = 3 these choices
may be: turn 15◦ left, go straight, or turn 15◦ right.)

It is assumed that the vehicles can communicate over a
wireless channel. Each vehicle sends location and head-
ing information about itself to the other vehicles. The
communication bandwidth is not unlimited, however.
This is modeled by allowing the vehicles to communi-
cate only every b time steps, where a higher value of
b represents a more limited channel. So, the vehicles
will be making b decisions per communication step, and
thus b − 1 steps with progressively outdated informa-
tion. It is also assumed that each vehicle is equipped
with a sensor. This sensor projects a window out in
front of it in which the vehicle can detect the environ-
ment below. The sensor has some probability of de-
tecting a target given that the vehicle encounters that
target, i.e. that a target lies within its sensor window.

For simplicity, a typical vehicle is assumed to fly at a
constant velocity and altitude, and to be able to avoid
colliding with other vehicles. The lifetime of the vehi-
cle, determined by the amount of fuel it carries, will
be N time steps. Additionally, at each time step the
vehicle must also choose a path that is at least q steps
ahead.

2.2 The Environment
The environment is given by a bounded search area,
about which some a priori information may be avail-
able. A vehicle carries a representation of the environ-
ment in its memory in the form of a cognitive map.
The information on this map is what the vehicle bases
its decisions on. As a vehicle’s sensor passes over the
terrain, a corresponding area of the map is updated to
reflect the information gained from the vehicle’s sensor.

Stationed in the environment are targets, the number
of which is not known, and the location of which is
hinted at by the a priori data. The targets are, at least
initially, assumed to be stationary and that there is no
correlation between the locations of targets (i.e. know-
ing the location of one target provides no information
about the location of any other target.)

The a priori data about the environment is assumed to
be given as information about the likelihood of targets
being located in different regions of the environment.
For any region r1, let Cr1 ∈ [0, 1] be the normalized
measure of the value of searching the region such that,
for any regions r1 and r2, if Cr1

Cr2
= X, then there is

X times as much probability of there being a target in

region r1 than region r2, assuming they are of the same
area. For example, it could be known that, given an
equal area, it is 10 times more likely to find a target on
the road than in the forest.

Let Ar be the area of any region r (of which there are
n total), and Ax(= (A1 + A2 + . . . + An)) be the area
of the whole map. Then, let

Qx =
n∑

r=1

(Ar × Cr) (1)

so that now the probability perceived by the vehicle of
a target being in region r can be calculated by

Pr =
Ar × Cr

Qx
(2)

A vehicle’s map is split into a grid of equal sized unit
areas, which are termed points, where the area of each
point (Ap) is the resolution that the vehicle will use
on its map, and thus within the area of each point p,
there is assumed to be a constant Cp. The cognitive
map aboard each vehicle then stores the Cp for every
point.

3 Main Results

3.1 The Decision Model and DP Solution
In order for the vehicles to plan their trajectories, they
need to know information about the state of the en-
vironment. The true state of the environment, after
discretization, is represented by: (1) a map like those
that the vehicles carry, except that it is updated by ev-
ery vehicle at every time step (this will be referred to as
the true map); and (2) by the locations and headings
of the vehicles. This true state is denoted by x∗

k. The
state, as perceived by vehicle i, is denoted as xi

k, or if
the vehicle index is assumed, xk. Under ideal condi-
tions, every vehicle will perceive the state as being the
true state (x∗

k = xi
k ∀i.)

The choice of which path to travel for vehicle i at time
k is the decision, or control ui

k (uk if the vehicle index
is assumed), and ui

k ∈ U , where U is a set of size m
and contains the choices that the vehicle can take (for
example: turn 15◦ left, go straight, or turn 15◦ right.)

The points that vehicle i’s sensor would pass over (and
would be updated on its map) as the vehicle travels
from state xi

k to the next state by taking the decision ui
k

are denoted by zi
xk,uk

(or zxk,uk
if the vehicle number

is assumed.) Note that these points depend only on
what path the decision making vehicle chooses to take
(ui

k), and not on any other vehicle.

Since the goal of the vehicles is to find targets, and the
targets are distributed according to some perceived dis-



tribution, the gain function should maximize the per-
ceived probability of finding a target. Gain is thus de-
fined as the reduction in probability of there being an
undiscovered target in a searched area. Our objective
would be to maximize the expected gains over the hori-
zon N for all the vehicles [2].

For v vehicles, the total gain at a time step k is a sum
of the gains of the individual vehicles:

g(xk, uk) =
v∑

i=1

gi(xk, uk) (3)

Under the assumption of unlimited computational
power, the one-step gain function for an individual ve-
hicle is defined as

gi(xk, uk) = σ(zi
xk,uk

) (4)

where σ(zi
xk,uk

) is a function that returns the gain from
searching the points in zi

xk,uk
, assuming that no other

vehicle interferes. Interference is defined as having two
or more vehicles searching the same points, when it
would be better if the vehicles were searching different
points.

Let Pp be the probability of there being an undiscov-
ered target in point p before searching the point. Let
P ′

p be the probability after the search (i.e. the proba-
bility of there being a target at that point and that it
was not found). Let ρ be the probability of finding a
target on one search of the point (given that the target
was at that point). Using conditional probability,

P ′
p = Pp(1 − ρ) (5)

Thus, the gain from searching a point (p) is

σ(p) = Pp−P ′
p = Pp−Pp(1−ρ) = Pp−Pp +ρPp = ρPp

(6)
and the gain from searching any arbitrary collection of
points za is

σ(za) = ρ
∑

p∈za

Pp =
ρAp

Qx

∑

p∈za

Cp (7)

Let Jk be defined as what is commonly called a “cost-
to-go” function [2], or, since the formulation is in terms
of gain instead of cost, a “gain-for-going” function,
from time step k to N . The problem can be solved, un-
der the assumption of unlimited computational power,
by letting the final gain (at step N) be JN = 0 (no
bonus for being in any particular state at time N), and
solving the DP recursion from time steps 1 to N :

Jk(xk) = max
uk∈U

({g(xk, uk) + Jk+1(f(xk, uk)}) (8)

where g(xk, uk) is the one-step gain function.

Therefore, in the idealistic case where the vehicles have
unlimited computational power, it would be possible
to treat the problem in an open-loop framework, which
could be solved before the vehicles are put into flight by
letting the vehicles expand not only their own search
paths, but also those of every other vehicle. Each vehi-
cle could thus find the globally best path not only for
itself, but also for each other vehicle. Thus, at any one
time step, they would know where the other vehicles
would be and would be able to plan a path such that
they would not interfere.

3.2 Refining the Model and Solution
The implicit cooperation detailed above will cease to
function when the unlimited computation assumption
is removed, as it would for a real-world implementation.
This results from the fact that every vehicle can no
longer expand every possible path of every vehicle, and
is thus going to have to rely on other methods to avoid
interfering. To implement the proposed scheme in a
realistic setting, then, there has to be some simplifying
assumptions.

Since the state of a vehicle is a path on a map, it is nat-
ural to view this as a line on the search map extending
behind the vehicle, connecting all the points the vehicle
has traveled, and to view the planning of the vehicle as
a tree starting from the vehicle’s current location, and
to view each branch of the tree as a potential state.

To address the problem of expanding the search tree
out to the end of the vehicle’s own lifetime, N, a lim-
ited look-ahead policy is used, in which rather than
computing the state to the end of the vehicle’s lifetime
(a tree of depth N), it replaces the cost-to-go at state
k + r (Jk+r) with the final cost (JN ) [2]. This allows
the system to calculate the paths generated by only go-
ing to a search depth of r, and to choose the best path
visible in this sub-problem. The size of the abbreviated
problem is in general much smaller than the size of the
original problem. Thus r can be chosen such that the
problem is tractable.

In order to give the vehicles a method by which to
predict the other vehicle’s behaviors without having to
explicitly calculate the other vehicle’s moves, the other
vehicles are modeled as stochastic elements, where a
random quantity wk is used to represent the loss in
gain at time k + q (compared to what was expected
when the decision is made at time k) because of in-
terference by another vehicle. The vehicles can then
use the expected result of this wk to plan where to go
to avoid undue interference. The distribution of wk

depends on zxk,uk
, since different areas have different

likelihoods of vehicles scanning them.



The gain at each step is then what one would get if no
interference were present minus the amount of gain one
would lose from another vehicle interfering,

g(xk, uk, wk) = σ(zxk,uk
) − wk(zxk,uk

) (9)

This modified gain is then used in the DP recursion
(Equation (8)) to determine the expected optimal path.

The amount of interference a vehicle expects at a point
p of the map is a function of ρ (since an interfering ve-
hicle will have reduced the value of p by ρ), σ(p) and
the probability of another vehicle interfering (i.e. scan-
ning point p before this vehicle does), which is denoted
as Pr(p). So

E(wk(p)) = ρ σ(p) Pr(p) (10)

Summing all the points in an area zxk,uk
gives

E(wk(zxk,uk
)) = ρ

∑

p∈zxk,uk

σ(p) Pr(p) (11)

It is important to note that the interference factors are
not symmetric between interfering vehicles, since the
first vehicle to search a region will receive full gain,
even if the second vehicle will not.

Since the vehicles’ behavior is governed by a known al-
gorithm, the distribution of probability of where any
particular vehicle will be is known to have some struc-
ture in space, and the exact shape of this structure is
formed from the constraints on the maneuverability of
the vehicle. Calculating Pr(i) for all i ∈ zxk,uk

exactly
would require each vehicle to expand every other ve-
hicle’s planning tree, and assign a likelihood to each
point on the map that would be scanned by traveling
that path based on the probability of the vehicle trav-
eling that path. Where that vehicle will go is based on
information that the planning vehicle may not have ac-
cess to, since the vehicle’s maps may not be the same,
so the planning vehicle must take an estimate of where
the other vehicle will be.

So, an approximate structure is formed by taking sev-
eral several spatial regions where each region represents
a certain constant probability of the vehicle causing in-
terference. Figure 1 shows a typical situation when this
process would be used. The vehicle with the eye repre-
sents where the planning vehicle will be in q steps, and
thus, where its planning will start from. The tree of
possible paths extends from it, and the best path must
be chosen from this tree. The vehicle plans its moves in
sequential order, so from left to right the figure shows
the decision process in time. The vehicle will travel
straight in the absence of any other factors, and the
heavy line shows the path the vehicle has chosen. Each
of the shaded regions extending from the other vehicle
represents the regions where interference is estimated

time = t time = t+1 time = t+2

Figure 1: A vehicle is planning where to go based on
another vehicle’s probable location.

to be able to happen. Note that the approximation re-
gion for this grows as the planning vehicle extends its
planning in time to take into account the fact that the
vehicles are moving.

Thus cooperation is achieved without the need for a
vehicle to expand any planning trees but its own. The
cooperation is of a passive sort, since the vehicles do
not negotiate. Instead, they use the communication
channel only to send knowledge of their locations and
headings. The structure of the regions, also, is flexible,
and the values can be tuned for better results or to
incorporate new information, with the additional pos-
sibility of online adjustment.

Following [2], a label correcting method was chosen to
do the search along the tree of possible choices a vehicle
could make. The algorithmic solution used falls within
the so-called “best first” method.

4 Simulation Results

A set of simulation studies was done to check the ef-
fectiveness of the algorithm in finding targets in a sce-
nario that vehicles might face (e.g. as part of a mili-
tary strike). This is compared to the same environment
searched by a standard search, which means a search
pattern that is decided upon a priori, e.g., a Zamboni
search; and also against the same algorithm, but with
the communication channel placed under more severe
restrictions. What this will show is that the proposed
algorithm can perform better than a standard search,
and also that improved cooperation also improves the
search.

In this example, the vehicles have 3 decisions at each
time step (m = 3):{ turn 15 degrees left, go straight,
or turn 15 degrees right}. The search depth is 6 times
steps, so that is how many steps ahead the vehicles
are planning. The vehicles move at a constant speed
of 5 units distance per time step, so they are planning
30 units distance ahead of where they know they will
be with certainty. The vehicles are also planning with
a 3 step buffer (q = 3), so they are planning a total



of 45 units ahead of where they are actually located.
There are 4 vehicles in this scenario, and the chance of
detecting a target given an encounter is 50% (ρ = 0.5).
The time between communications is 2 time steps (b =
2).

A priori data can come from both the terrain and from
other sources of information. The default type of ter-
rain in this example scenario is the white space on the
map (as seen in the “background” of Figure 2.) This
represents flat areas about which nothing remarkable is
known. Information from other types of terrain comes
in the form of two features: a lake and a road. It
is known that the targets cannot float, thus there is
0% chance of finding a target on the lake (the circu-
lar region in the middle of the figure.) However, it is
known that targets will be more likely to be found on
the road (the narrow band running vertically along the
figure.) An equal sized comparison of the white space
area is 90% as likely to contain a target as the road.
Other information has also been provided. In this ex-
ample, the a priori data is from satellites and previous
searches. The hatched area in the upper left indicates
an area where satellite surveillance has determined that
it is only 10% as likely to find a target in this region
as in the unshaded region. The hatched region in the
lower right shows an area that has been subjected to
a previous search, and thus any terrain in this area is
50% (= ρ) as likely to contain any new targets as the
same type of terrain in the unhatched area. The cross-
hatched region in the center of the map shows an area
where a satellite has found increased target activity.
Thus, it is known that there is twice as much chance
of finding a target in this area as in the corresponding
areas in the unshaded region (if comparing equal sized
regions.)

The search depth is 6 time steps, so the approximation
region is also six levels. For each test run, the vehicles
have the same starting position. The targets are ran-
domly assigned to the environment according to the a
priori information. Then the vehicles search the area
10 times, recording the number of targets encountered,
and then the number of targets positively identified. It
is possible for a vehicle to encounter a target (i.e. to
have it appear within its sensor window) but not to
identify it. The chance of this happening is governed
by ρ. This process is repeated 1000 times for differing
maximum lifetimes.

Figure 2 shows the result of running the algorithm
shown in this paper in the given environment. Fig-
ure 3 displays the standard search that it is compared
against. In both cases, the vehicles begin in the bottom
left hand corner, with each vehicle’s path represented
by a line. The standard search is in this case a zam-
boni search, so called because it resembles the path a
zamboni machine takes over an ice rink [1].
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Figure 2: Vehicle’s movements for the proposed algo-
rithm’s search.
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Zamboni Search (200 time steps)

Figure 3: Vehicle’s movements for the ZAMBONI search.

Note that in this example one can gain a general view of
the allocation of effort for each method. The zamboni
search covers the lake and the region where the satellite
information has determined that there is little chance
of finding a target. On the other hand, the cooperative
algorithm generally allocates its effort to areas where
there is better chance of finding targets.

The number of targets found during the simulations is
shown in Figures 4 and 5. Figure 4 shows how the algo-
rithm proposed in this paper fares against the zamboni
search, from Figure 3. The solid lines show the num-
ber of targets positively identified by each algorithm.
The lines marked with squares are the results from the
proposed algorithm, while the lines marked with the
circles are the results of the zamboni algorithm. The
dashed lines show the number of target encounters of
each algorithm, where an encounter is where a vehi-
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Figure 5: The Effects of Cooperation (or the lack thereof).

cle’s sensor searches a point with a target, whether or
not the sensor actually detects the target. This figure
shows how much better the proposed algorithm can
perform than a standard search pattern. As can be
seen, the proposed algorithm is much more efficient at
detecting targets (the solid lines), and at covering the
areas with targets (the dashed lines.)

Figure 5 shows the effect of communication (or the lack
of it.) Since the cooperation of the vehicles in this
scheme is passive, the amount of communication di-
rectly effects the amount of cooperation that the vehi-
cles exhibit, and one would expect that decreased com-
munication would lead to a worse search performance.
The same algorithm was run several times in the same
environment, except that the communication batch de-
lay was increased until finally, at a batch delay of infin-
ity, the vehicles were not permitted to communicate at
all, and thus, are not allowed any form of cooperation.
As can be seen from this diagram, deceased commu-
nication also decreased the average number of targets
found on the search. However, note that even with

tight restrictions on communication, the algorithm can
still perform very well compared to the zamboni search.
Additionally, the results here justify the assertion that
cooperation is beneficial to the overall search, and give
a rationale for trying to improve the cooperation, in
order to perform a better overall search.

5 Conclusion

The performance of autonomous UAV’s searching for
targets has been shown to benefit from a decision and
control scheme that creates a model in which gain is
based on maximizing the expected number of targets
found given some a priori information, and in which
a feasible method of cooperation is achieved through
considering other vehicles as stochastic elements. This
scheme lends itself to an implementation using a dy-
namic programming solution. Even though the results
of removing the assumption of unlimited computation
produce a necessarily sub-optimal result, the paths gen-
erated by the algorithm are still quite efficient at find-
ing targets, as was shown in the simulation study.
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