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An Introduction to Observers
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DAVID G. LUENBERGER, SENIOR MEMBER, IEEE

Abstract—Observers which approximately reconstruct missing
state-variable information necessary for control are presented in an
introductory manner. The special topics of the identity observer, a
reduced-order observer, linear functional observers, stability prop-
erties, and dual observers are discussed.

I. INTRODUCTION

IT IS OFTEN convenient when designing feedback
control systems to assume initially that the entire
state vector of the system to be controlled is available
through measurement. Thus for the linear time-invariant
system governed by

x(t) = Ax(¢) + Bu(l) (1.1)

where x is an n X 1 state vector, u is an » X 1 input
vector, 4 is an n X n system matrix, and Bisann X r
distribution matrix, one might design a feedback law of
the form u(t) = ¢(x(t), {) which could be implemented if
x(t) were available. This is, for example, precisely the
form of control law that results from solution of a quadratic
loss optimization problem posed for the system (1),
f design techniques that place poles at prespecified
Po=its, and from numerous other techniques that insure
stability and in some sense improve system performance.

If the entire state vector cannot be measured, as is
typical in most complex systems, the control law deduced
in the form u(f) = ¢(x(¢), {) cannot be implemented.
Thus either a new approach that directly accounts
for the nonavailability of the entire state vector must be
devised, or a suitable approximation to the state vector
must be determined that can be substituted into the con-
trol law. In almost every situation the latter approach,
that of developing and using an approximate state vector,
is vastly simpler than a new direct attack on the design
problem.

Adopting this point of view, that an approximate state
vector will be substituted for the unavailable state,
results in the decomposition of a control design problem
into two phases. The first phase is design of the control
law assuming that the state vector is available. This may
be based on optimization or other design techniques and
typically results in a control law without dynamics. The
second phase is the design of a system that produces an
approximation to the state vector. This system, which
in a deterministic setting is called an observer, or Luen-
berger observer to distinguish it from the Kalman filter,

~-nuseript received July 21, 1971. Paper recommended by
R. W. Brockett, Associate Guest Editor. This research was supported
11% xz)art by the National Science Foundation under Grant GK

125,

The author is with the Department of Engineering-Economic
Systems, School of Engineering, Stanford University, Stanford,
Calif. 94305, currently on leave at Office of Science and Technology,
Executive Office of the President, Washington, D.C.

has as its inputs the inputs and available outputs of the
system whose state is to be approximated and has a state
vector that is linearly related to the desired approxima-
tion. The observer is a dynamic system whose charac-
teristics are somewhat free to be determined by the de-
signer, and it is through its introduction that dynamics
enter the overall two-phase design procedure when the
entire state is not available.

The observer was first proposed and developed in {1]
and further developed in [2]. Since these early -papers,
which concentrated on observers for purely deterministic
continuous-time linear time-invariant systems, observer
theory has been extended by several researchers to include
time-varying systems, discrete systems, and stochastic
systems [3]-{18]. The effect of an observer on system
performance (with respect to a quadratic cost functional)
has been examined [5], [19]-[22]. New insights have been
obtained, and the theory has been substantially stream-
lined [23]-[25]. At the same time, since 1964, observers
have formed an integral part of numerous control system
designs of which a small percentage have been explicitly
reported [26]-[31]. The simplicity of its design and its
resolution of the difficulty imposed by missing measure-
ments make the observer an attractive general design
component [24], [32], [33].

In addition to their practical utility, observers offer a
unique theoretical fascination. The associated theory is
intimately related to the fundamental linear system
concepts of controllability, observability, dynamic re-
sponse, and stability, and provides a simple setting in
which all of these concepts interact. This theoretical
richness has made the observer an attractive area of re-
search.

This paper discusses the basic elements of observer
design from an elementary viewpoint. For simplicity
attention is restricted, as in the early papers, to deter-
ministic continuous-time linear time-invariant systems.
The approach taken in this paper, however, is influenced
substantially by the simplification and insights derived
from the work of several other authors during the past
seven years. In order to highlight the new techniques and
to provide the opportunity for comparison with the
old, many of the example systems presented in this paper
are the same as in the earlier papers.

II. Basic THEORY

A. Almost any System is an Observer

Initially, consider the problem of observing a free }
system S, l.e., a system with zero input. If the available '
outputs of this system are used as inputs to drive another ;
system S;, the second system will almost always serve §
as an observer of the first system in that its state will ]
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Fig. 1.

% A simple observer.
¥ tend to track a linear transformation of the state of the
' first system (see Fig. 1). This result forms the basis of
observer theory and explains why there is a great deal of
@ 2 freedom in the design of an observer.

 : Theorem 1 (Observation of a Free System): Let S; be a
¥ free system, (1) = Ax(f), which drives S, 2(t) = Fz(t) +
Q Hx(t). Suppose there is a transformation T satisfying
o TA— FT = H If 2(0) = Tx(0), then z(t) = Tx(t) for
I 21it > 0. Or more generally,

2(t) = Tx(t) + €"[z(0) — Tx(0)]. (2.1)

 §
: Proof: We may write immediately

; i(t) — Ti(t) = Fa(t) + Hx(t) — TAx().
I Substituting 74 — FT = H this becomes

* i(t) — Ti(t) = Flz() — Tx(®)]

g ; which has (2.1) as a solution.

It should be noted that the two systems S; and S,
¥ need not have the same dimension. Also, it can be shown
f [1] that there is a unique solution T to the equation
TA — FT = Hif A and F have no common eigenvalues.
% Thus any system S, having different eigenvalues from A4

¥ is an observer for S in the sense of Theorem 1.
Next, we note that the result of Theorem 1 for frec
BF systems can be easily extended to forced systems by
P8 including the input in the observer as well as the original

IR system. Thus if S; is governed by

1(f) = Ax(t) + Bu(t)

A

(2.2)

- a system S governed by

z(t) = Fz(t) + Hx(t) + TBu() (2.3)

¥ will satisfy (2.1). Therefore, an observer for a system can
g be designed by first assuming the system is free and then
. incorporating the inputs as in (2.3).

 B. Identity Observer

" An obviously convenient observer would be one in
which the transformation 7T relating the state of the
fgobserver to the state of the original system is the identity
transformation. This requires that the observer S be of
E the same dynamic order as the original system S; and that
(with T = I) F = A — H. Specification of such an ob-
 server rests therefore on specification of the matrix H.

* The matrix H is determined partly by the fixed output
Fstructure of the original system and partly by the input
 structure of the observer. If S;, with an m-dimensional
 output vector y, is governed by

() = Ax(t)
y() = Cx(®)

(2.4a)
(2.4b)
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and S,, the observer, is governed by

() = Fz(t) + Gy (2.5)

then H = GC. In designing the observer the m X n
matrix C is fixed and the n X m matrix G is arbitrary.
Thus an identity observer is determined uniquely by
selection of G and takes the form

i) = (A — GOz(t) + Gy(). (2.6)

Any G leads to an identity observer but the dynamic
response of the observing process is, according to Theorem
1, determined by the matrix 4 — GC.

We now state a fundamental lemma for linear systems
that shows that an identity observer can be designed to
have arbitrary dynamics if the original system is com-
pletely observable. First recall that a system (2.4) is
completely observable if the matrix

[C/EAIC'E(A'VC'I: U Laetod

has rank n. Generally, if an n X n matrix 4 andanm X n
matrix C satisfy this condition we shall say (C, 4) is
completely observable.

Lemma 1: Corresponding to the real matrices C and A4,
then the set of eigenvalues of A — GC can be made to
correspond to the set of cigenvalues of any n X n real
matrix by suitable choice of the real matrix § if and
only if (C, 4) is completely observable.

This lemma, which is now a cornerstone of linear
system theory, was developed in several steps over a
period of nearly a decade. For the case m = 1, corre-
sponding to single output systems, early statements can
be found in Kalman [34] and Luenberger (1], [35]. The
general result is implicitly contained in Luenberger [2],
[36], and the problem is treated definitively in Wonham
[37]. A nice proof is given by Gopinath [25]. (It was
recently pointed out to me that Popov [38] published a
proof of a result of this type in 1964.) Calculation of the
appropriate G matrix to achieve given eigenvalue place-
ment for a high-dimensional multivariable system can,
however, be a difficult computational chore.

The result of this basic lemma translates directly into a
result on observers.

Theorem 2: An identity observer having arbitrary
dynamics can be designed for a linear time-invariant
system if and only if the system is completely observable.

In practice, the eigenvalues of the observer are selected
to be negative, so that the state of the observer will
converge to the state of the observed system, and they are
chosen to be somewhat more negative than the eigen-
values of the observed systém so that convergence is
faster than other system cffects. Theoretically, the eigen-
values can be moved arbitrarily toward minus infinity,
yielding extremely rapid convergence. This tends, how-
ever, to make the observer act like a differentiator and
thereby become highly sensitive to noise, and to introduce
other difficulties. The gencral problem of selecting good

]
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Fig. 2. A second-order system.

eigenvalues is still not completely resolved but the practice
of placing them so that the observer is slightly faster than
the rest of the (closed-loop) system seems to be a good one.

Ezample: Consider the system shown in Tig. 2. This
has state-variable representation.

3?71 —2 1 21 O
xz] [ 0 —1]@}“1]“
o
y L_ﬂ)xz]

An identity observer is determined by specifying the
observer input vector

(2.7a)

il

(2.7b)

G = -"‘}-
g2
The resulting observer system matrix is
4 - GC = [_2 - _i] 2.58)
which has corresponding characteristic equation
NM+B+gr+24+a+g =0 (2.9

Suppose we decide to make the observer have two eigen-
values equal to —3. This would give the characteristic
equation A\ + 3)2 = A2 + 6\ + 9 = 0. Matching coeffi-
cients from (2.9) yields g; = 3, g2 = 4. The observer is thus
governed by

|l _|[—5 12 3 0
22]—[—4 _1]22]4—4];/-}—1]%

I1I. REpuceEp DiMENSION OBSERVER

The identity observer although possessing an ample
measure of simplicity also possesses a certain degree of
redundancy. The redundancy stems from the fact that
while the observer constructs an estimate of the entire
state, part of the state as given by the system outputs are
already available by direct measurement. This redundancy
can be eliminated and an observer of lower dimension but
still of arbitrary dynamiecs can be constructed.

The basic construction of a reduced-order observer is
shown in Fig. 3. If y(t) is of dimension m, an observer of
order n — m is constructed with state z(f) that approxi-
mates Tx(¢) for some m X » matrix T, as in Theorem 1.
Then an estimate %(f) of x(f) can be determined through

. T -1 z(2)
x(f) = [:I
cl y@®
provided that the indicated partitioned matrix is in-
vertible. Thus the T associated with the observer must

have n — m rows that are linearly independent of the
rows of C.

(3.1)
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Fig. 3. Structure of reduced-order observer.~

The reduced-order observer was first introduced in
[1]). The simple development presented in this section is
due to Gopinath [25].

We again consider the system

#(t) = Ax(t) + Bu(®)
y(t) = Cx(®)

and assume without loss of generality that the m outputs
of the system are linearly independent—or equivalently
that the output distribution matrix C has rank m. In this
case it can also be assumed, by possibly introducing a
change of coordinates, that the matrix C takes the form
C = [I0], i.e., C is partitioned into an m X m identity
matrix and an m X (n — m) zero matrix. (An appropriate
change of coordinates is obtained by selecting an (n —m)
X n matrix D in such a way that

v-[2]

is nonsingular and using the variables x = Mx.) It is then
convenient to partition the state vector as

1]
w

and accordingly write the system in the form
y(©) = Any(®) + Aww() + Buw() (3.32)
w(t) = Any(t) + Anw(t) + Bau(l). (3.3b)

The idea of the construction is then as follows. The
vector y(t) is available for measurement, and if we dif-
ferentiate it, so is y(f). Since u(f) is also measureable
(3.3a) provides the measurement Apw(t) for the system
(3.3b) which has state vector w(f) and input Aay(t) +
Bsu(t). An identity observer of order n — m is constructed
for (3.3b) using this measurement. Later the necessity to
differentiate y is circumvented.

The justification of the construction is based on the
following lemma {25].

(3.2a)
(3.2b)

Lemma 2: If (C, A) is completely observable, then so is
(Alﬁy A22)'

The validity of this statement is, in view of the preceding
discussion, intuitively clear. It can be easily proved directly
by applying the definition of complete observability.

To construct the observer we initially define it in the
form

W(t) = (A — LA)(t) + Auy(t) + Bu(?)
+ Ly(t) — Auy(t)) — LBw(t). (3.4)

In view of Lemmas 1 and 2, L can be selected so that
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Fig. 5. Reduced-order observer.

L
Ay — EAn has arbitrary eigenvalues. The configuration

of this observer is shown in Fig. 4.

The required differentiation of y can be avoided by
modifying the block diagram of Fig. 4 to that of Fig. 5,
which is equivalent at the point @. This vields the desired
final form of the observer, which can be written

i(f) = (Aw — LAp)Z(t) + (4n — LAw)Ly()
+ (Ag — LAny() + (B, — LBju(t) (3.5)
with

z(t) = @) — Ly(®). (3.6)

i For this observer T = [— LiI]. This construction enables
E us to state the following theorem.

Theorem 3: Corresponding to an nth-order completely

| controllable linear time-invariant system having m

linearly independent outputs a state observer of order

k' n — m can be constructed having arbitrary eigenvalues.

It is important to understand that the explicit form of

- the reduced-order observer given here, obtained by par-

titioning the system, is only one way to find the observer.

b In any specific instance, other techniques such as trans-
3 forming to canonical form or simply hypothesizing the
L general structure and solving for the unknown parameters

[ may be algebraically simpler. Theorem 3 guarantees that
E such methods will always yield an appropriate result.

The preceding method used in the derivation is, of course,

k. often a convenient one.

Ezample: Consider the system shown in Tig. 2 and

~ treated in the example of Section II. This is a second-
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Fig. 6. Observer for second-order system.

order system with a single output so a first-order observer
with an arbitrary eigenvalue can be constructed. The C

matrix already has the required form, € = 1 0. In this
[

case Ay — GAp = —1 — G, which gives the eigenvalue
of the observer. Let us select G = 2 so that the observer
will have its eigenvalue equal to —3. The resulting
observer attached to the system is shown in Fig. 6.

TV. OBSERVING A SINGLE LiNEAR FUNCTIONAL

For some applications an estimate of a single linear
functional ¢ = @’x of the state is all that is required.
For example, a linear time-invariant control law for a
single input system is by definition determined simply by a
linear functional of the system state. The question arises
then as to whether a less complex observer can be con-
structed to vield an estimate of a given linear functional
than an observer that estimates the entire state. Of course,
again, it is desired to have freedom in the selection of the
eigenvalues of the observer.

A major result for this problem [2] is that any given
linear functional of the state, say, ¢ = a'x, can be esti-
mated with an observer having » — 1 arbitrary eigenvalues.
Here » is the observability index [2] defined as the least
positive integer for which the matrix

[C’?A'C'E(A’VC':; . ':(Ar)u—lc/]

has rank 7. Since for any completely observable system
y — 1 < n — m and for many systems » — 1is far less
than n — m, observing a single linear functional of the
state may be far simpler than observing the entire state
vector. -

The general form of the observer is exactly analogous
to a reduced-order observer for the entire state vector.
The estimate of ¢ = a’x is defined by

(1) = byt) + c'z(t)
#(t) = Fz(t) + Hx(t) + T Bu(t)

(4.1)
(4.2)

where F, H, T, B are as in Section II-A and where b and ¢
are vectors satisfying b'C + ¢'T = a’.

Again the important result is that the observer need
only have order » — 1. The precise design technique is
dictated by considerations of convenience.

We illustrate the general result with a single example.
The method used in this example can, however, be applied
to any multivariable system.




600

v, L[ . I A .
R s s+l s+2 s+2 !

Fig. 7. A fourth-order system.

x,°—l— -2

1
x,o—[— -5

Fig. 8. Functional observer.
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Example: Consider the fourth-order system shown in
Fig. 7. This system with available measurements z; and
t; has observability index 2. Thus any linear functional
can be observed with a first-order observer. Let us decide
to construct an observer with a single eigenvalue equal to
— 3 to observe the functional z; 4+ 24

Initially neglecting the input u we hypothesize an
observer of the form

2= —3z + 1 + J323.

According to Theorem 1 this has an associated T satisfying

-2 1 00
0 -2 1 0

T o o -1 1| T3T=900a0 43
-1 0 00

IfT =8 t t3 t, we would iket, = 1, ty = 1. Sub-

[
stituting these values in (4.3) we obtain the equation

=¢0 0 g O
L

e+

that can be solved for the four unknowns &, g1, &, ¢
Thisresults in t; = —1, 8 = =3, ;1 = —2,g; = —35.
From this the final observer shown in Fig. 8 is deduced by
inspection.

V. CrosEp-LooP PROPERTIES

Once an observer has been constructed for a linear
system which produces an estimate of the state vector or
of a linear transformation of the state vector it is impor-
tant to consider the effect induced by using this estimate
in place of the true value called for by a control law. Of
paramount importance in this respect is the effect of an
observer on the closed-loop stability properties of the
system. It would be undesirable, for example, if an other-
_.wise stable control design became unstable when it was
realized by introduction of an observer. Observers,
fortunately, do not disturb stability properties when they
are introduced. In this section we show that if a linear
time-invariant control law is realized with an observer,
the resulting eigenvalues of the system are those of the
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observer itself and those that would be obtained if the

control law could be directly implemented. Thus an ob-

server does not change the closed-loop eigenvalues of a

design but merely adjoins its own eigenvalues. Similar

results hold for systems with nonlinear control laws [2].
Suppose we have the system

() = Ax(f) + Bu(f) (5.1a)
y() = Cx(t) (5.1b)

and the control law
u(t) = Kx(2). (5.2)

If it were possible to realize this control law by use of
available measurements (which would be possible if
K = RC for some R), then the closed-loop system would
be governed by p

x(t) = (A + BK)x(t) (5.3)

and hence its eigenvalues would be the eigenvalues of
A + BK.

Now if the control cannot be realized directly, an ob-
server of the form

#(t) = Fz(t) + Gy(t) + TBu(Y) (5.4a)
u(t) = Kz(t) = Ez(t) + Dy(?) (5.4b)
where
TA — FT = GC (5.5a)
K =ET + DC (5.5b)

can be constructed. From our previous theory (C, A)
completely observable is sufficient for there to be G,
E, D, F, T satisfying (5.5) with F having arbitrary eigen-
values. Setting u(f) = K#(t) leads to the composite system

A+ BDC BE ]x]

X
z‘] - [GC + TBDC F+ TBE]: (5:6)

This whole structure can be simplified by introducing
£ = z — Tx and using x and £ as coordinates. Then (5.6)
becomes, using (5.5)

x] _ [A + BK BE] x].
£l 0 F &
Thus the eigenvalues of the composite system are those of
A+ BK and of F.

We note that in view of Lemma 1 (applied in its dual
form) if the system (5.1) is completely controllable it is
possible to select K to place the closed-loop eigenvalues
arbitrarily. If this control law is not realizable but the
system is completely observable, an observer (of some
order no greater than n — m) can be constructed so that
the control law can be estimated. Since the eigenvalues

(5.7)

of the observer are also arbitrary the eigenvalues of the

complete composite system may be selected arbitrarily.

We therefore state the following important result of .

linear system theory [1], [2].

Theorem 4: Corresponding to an nth order completely .

is

wi
we
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Fig. 10. Compensator for example.
'5.2) ;s
- of ;controllable and completely obscrvable system (5.1)
Cif having m linearly independent outputs, 2 dynamic feed-
wld  back system of order n — m can be constructed such that
¥ the 2n — m eigenvalues of the composite system take any
5.3) i preassigned values.
).
| Although this eigenvalue result for linear time-invariant
of § systems is of great theoretical interest, it should be kept

 in mind that the more general key result is that stability

b- is not affected by a (stable) observer. Thus even for non-
' ! linear or time-varying control laws an observer can supply

a) )((v- J 2 suitable estimate.
¥ Ezample: Suppose a feedback control system is to be
b) f designed for the system shown in Fig. 2 so that its output
} closely tracks a disturbance input d. The general form of

B design is shown in Fig. 9.

2) For the particular system shown in Fig. 2 let us decide

" to design a control law that places the eigenvalues at
;' —1 =+ 4. It is easily found that w = —2z; + x. will ac-
R complish this. If this law is implemented with the first-
} order observer constructed earlier, we obtain the overall
. system shown in Fig. 10, which can be verified to have
eigenvalues —3, —1 + ¢, -1 —

VI. DuaL OBSERVERS

t The fundamental property of one system observing
" another can be applied in a reverse direction to obtain a
_ special kind of controller. Such a controller, called a dual
i observer, was introduced by Brasch [33].

Suppose in Fig. 1 the system S, is the given system and
8, is a system that we construct to control S;. We have
. shown that the system S tends to follow S; and hence
¥ S, can be considered as governing the behavior of S.

To make this discussion specific suppose the plant

x(t) = Ax(l) + Bu(l) (6.1a)
y(t) = Cx(1) (6.1b)
is driven by the free system
2(t) = Fz(t) (6.2a)
u(t) = Jz(t) (6.2b)

where AP — PF = BJ for some P. Then from Theorem 1
we sec that in this case the vector n = x + Pz1s governed
by the equation

a() = An(D)
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and hence the plant follows the free system. This tracking
property can be used to define a closed-loop system for the
plant.

Rather than fix attention on the fact that only certain
outputs of the plant are available, we concentrate on the
fact that only certain inputs, as defined by B, are available.
If we had complete freedom as to where inputs could be
supplied, the output limitation would not much matter.
Indeed, if the output y(f) = Cx(t) could be fed to the
system in the form

x(t) = Ax(t) + Ly())

then the eigenvalues of the system would be the eigen-
values of 4 + LC. By Lemma 1, if the system is observ-
able L can be selected to place the eigenvalues arbitrarily.
The dual observer can be thought of as supplying an
approximation to the desired inputs.

To achieve the desired result we construct the dual
observer in the form

(6.3)

i() = Fz(t) + Mw(t) (6.4a)
w(t) = y@t) + CPz(Y) (6.4b)
u(t) = Jz(t) + Nw(t) (6.4¢)
where
AP — PF = BJ (6.52)
L = PM 4+ BN. (6.5b)

Equations (6.5) are dual to (5.5) and will have solution
J, M, N, F with F having arbitrary eigenvalues if (6.1)
is completely controllable.

The composite system is

x] _ [A + BNC BJ+ BNCP] x]_

P MC F+ MCP |z (6.6)

Introducing n = x + Pz and using z and n for coordinates
vields the composite system

2l _[A+LC 0=

i MC Flz
which is the dual of (5.7). The eigenvalues of the com-
posite system are thus seen to be the eigenvalues of 4 +

LC and the eigenvalues of F. We may therefore state the
dual of Theorem 4.

(6.7)

Theorem 5: Corresponding to an nth-order completely
controllable and completely observable system (6.1)
having r linearly independent inputs, a dynamic feed-
back system of order n — r can be constructed such that
the 2n — r eigenvalues of the composite system take any
preassigned values.

VII. CONCLUSIONS

It has been shown that missing state-variable infor-
mation, not available for measurement, can be suitably
approximated by an observer. Generally, as more output
variables are made available, the required order of the
observer is decreased.

——————eE
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A\lthough the introductory treatment given in this
..per is restricted to time-invariant deterministic con-
tinuous-time linear systems, much of the theory can be
extended to more general situations. The references cited
for this paper should be consulted for these extensions.
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